McCourt P, Desveaux D
New Phytol. 2010 Jan;185(1):15-26
PubMed PMID: 19825020
Abstract
The success of the genomics revolution to construct a genetic architecture of a variety of model organisms has placed functional biologists under pressure to show what each individual gene does in vivo. Traditionally, this task has fallen on geneticists who systematically perturb gene function and study the consequences. With the advent of large, easily accessible, small-molecule libraries and new methods of chemical synthesis, biologists now have new ways to probe gene function. Often called chemical genetics, this approach involves the screening of compounds that perturb a process of interest. In this scenario, each perturbing chemical is analogous to a specific mutation. Here, we summarize, with specific examples, how chemical genetics is being used in combination with traditional genetics to address problems in plant biology. Because chemical genetics is rooted in genetic analysis, we focus on how chemicals used in combination with genetics can be very powerful in dissecting a process of interest.