Lumba S, Holbrook-Smith D, McCourt P
Nat Chem Biol. Published May 17, 2017.
https://doi.org/10.1038/nchembio.2340
PMID: 28514432
Abstract
Small-molecule hormones play central roles in plant development, ranging from cellular differentiation and organ formation to developmental response instruction in changing environments. A recently discovered collection of related small molecules collectively called strigolactones are of particular interest, as these hormones also function as ecological communicators between plants and fungi and between parasitic plants and their hosts. Advances from model plant systems have begun to unravel how, as a hormone, strigolactone is perceived and transduced. In this Review, we summarize this information and examine how understanding strigolactone hormone signaling is leading to insights into parasitic plant infections. We specifically focus on how the development of chemical probes can be used in combination with model plant systems to dissect strigolactone’s perception in the parasitic plant Striga hermonthica. This information is particularly relevant since Striga is considered one of the largest impediments to food security in sub-Saharan Africa.