Hauser FE, Chang BS
Curr Opin Genet Dev. Published Nov 2, 2017.
https://doi.org/10.1016/j.gde.2017.09.005
PMID: 29102895
Abstract
Sensory systems provide valuable insight into the evolution of molecular mechanisms underlying organismal anatomy, physiology, and behaviour. Visual pigments, which mediate the first step in visual transduction, offer a unique window into the relationship between molecular variation and visual performance, and enhance our understanding of how ecology, life history, and physiology may shape genetic variation across a variety of organisms. Here we review recent work investigating vertebrate visual pigments from a number of perspectives. Opsin gene duplication, loss, differential expression, structural variation, and the physiological context in which they operate, have profoundly shaped the visual capabilities of vertebrates adapting to novel environments. We note the importance of conceptual frameworks in investigating visual pigment diversity in vertebrates, highlighting key examples including evolutionary transitions between different photic environments, major shifts in life history evolution and ecology, evolutionary innovations in visual system anatomy and physiology, as well as shifts in visually mediated behaviours and behavioural ecology. We emphasize the utility of studying visual pigment evolution in the context of these different perspectives, and demonstrate how the integrative approaches discussed in this review contribute to a better understanding of the underlying molecular processes mediating adaptation in sensory systems, and the contexts in which they occur.