Divergent positive selection in rhodopsin from lake and riverine cichlid fishes

Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BS

Mol. Biol. Evol. 2014 May;31(5):1149-65

PMID: 24509690

Abstract

Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.

Seasonal community succession of the phyllosphere microbiome

Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS

Mol. Plant Microbe Interact. 2015 Mar;28(3):274-85

PMID: 25679538

Abstract

The leaf microbiome is influenced by both biotic and abiotic factors. Currently, we know little about the relative importance of these factors in determining microbiota composition and dynamics. To explore this issue, we collected weekly leaf samples over a 98-day growing season from multiple cultivars of common bean, soybean, and canola planted at three locations in Ontario, Canada, and performed Illumina-based microbiome analysis. We find that the leaf microbiota at the beginning of the season is very strongly influenced by the soil microbiota but, as the season progresses, it differentiates, becomes significantly less diverse, and transitions to having a greater proportion of leaf-specific taxa that are shared among all samples. A phylogenetic investigation of communities by reconstruction of unobserved states imputation of microbiome function inferred from the taxonomic data found significant differences between the soil and leaf microbiome, with a significant enrichment of motility gene categories in the former and metabolic gene categories in the latter. A network co-occurrence analysis identified two highly connected clusters as well as subclusters of putative pathogens and growth-promoting bacteria. These data reveal some of the complex ecological dynamics that occur in microbial communities over the course of a growing season and highlight the importance of community succession.

Infant gut microbiota and food sensitization: associations in the first year of life

Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, HayGlass KT, Mandhane PJ, Turvey SE, Subbarao P, Becker AB, Scott JA, Kozyrskyj AL,

Clin. Exp. Allergy 2015 Jan;

PMID: 25599982

Abstract

BACKGROUND: The gut microbiota is established during infancy and plays a fundamental role in shaping host immunity. Colonization patterns may influence the development of atopic disease, but existing evidence is limited and conflicting.

OBJECTIVE: To explore associations of infant gut microbiota and food sensitization.

METHODS: Food sensitization at 1 year was determined by skin prick testing in 166 infants from the population-based Canadian Healthy Infant Longitudinal Development (CHILD) study. Fecal samples were collected at 3 and 12 months, and microbiota was characterized by Illumina 16S rRNA sequencing.

RESULTS: Twelve infants (7.2%) were sensitized to ≥1 common food allergen at 1 year. Enterobacteriaceae were over-represented and Bacteroidaceae were under-represented in the gut microbiota of food-sensitized infants at 3 months and 1 year, whereas lower microbiota richness was evident only at 3 months. Each quartile increase in richness at 3 months was associated with a 55% reduction in risk for food sensitization by 1 year (adjusted odds ratio 0.45, 95% confidence interval 0.23-0.87). Independently, each quartile increase in Enterobacteriaceae/Bacteroidaceae ratio was associated with a 2-fold increase in risk (2.02, 1.07-3.80). The latter was partially explained by breastfeeding, but neither association was altered by caesarean delivery or antibiotic exposure. At 1 year, the Enterobacteriaceae/Bacteroidaceae ratio remained elevated among sensitized infants, who also tended to have decreased abundance of Ruminococcaceae.

CONCLUSIONS & CLINICAL RELEVANCE: Low gut microbiota richness and an elevated Enterobacteriaceae/Bacteroidaceae ratio in early infancy are associated with subsequent food sensitization, suggesting that early gut colonization may contribute to the development of atopic disease, including food allergy. This article is protected by copyright. All rights reserved.

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis

Lewis JD, Wilton M, Mott GA, Lu W, Hassan JA, Guttman DS, Desveaux D

PLoS ONE 2014;9(12):e116152

PMID: 25546415

Abstract

Pseudomonas syringae employs a type III secretion system to inject 20-30 different type III effector (T3SE) proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant and animal pathogenic bacteria. In P. syringae, this superfamily includes the evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE transgenic lines of Arabidopsis for HopZ family members and characterized them for immune suppression phenotypes. We show that all of the HopZ family members can actively suppress various facets of Arabidopsis immunity in a catalytic residue-dependent manner. HopZ family members can differentially suppress the activation of mitogen-activated protein (MAP) kinase cascades or the production of reactive oxygen species, whereas all members can promote the growth of non-virulent P. syringae. Localization studies show that four of the HopZ family members containing predicted myristoylation sites are localized to the vicinity of the plasma membrane while HopZ3 which lacks the myristoylation site is at least partially nuclear localized, suggesting diversification of immunosuppressive mechanisms. Overall, we demonstrate that despite significant evolutionary diversification, all HopZ family members can suppress immunity in Arabidopsis.

A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential

Zhou HY, Katsman Y, Dhaliwal NK, Davidson S, Macpherson NN, Sakthidevi M, Collura F, Mitchell JA

Genes Dev. 2014 Dec;28(24):2699-711

PMID: 25512558

Abstract

The Sox2 transcription factor must be robustly transcribed in embryonic stem (ES) cells to maintain pluripotency. Two gene-proximal enhancers, Sox2 regulatory region 1 (SRR1) and SRR2, display activity in reporter assays, but deleting SRR1 has no effect on pluripotency. We identified and functionally validated the sequences required for Sox2 transcription based on a computational model that predicted transcriptional enhancer elements within 130 kb of Sox2. Our reporter assays revealed three novel enhancers–SRR18, SRR107, and SRR111–that, through the formation of chromatin loops, form a chromatin complex with the Sox2 promoter in ES cells. Using the CRISPR/Cas9 system and F1 ES cells (Mus musculus(129) × Mus castaneus), we generated heterozygous deletions of each enhancer region, revealing that only the distal cluster containing SRR107 and SRR111, located >100 kb downstream from Sox2, is required for cis-regulation of Sox2 in ES cells. Furthermore, homozygous deletion of this distal Sox2 control region (SCR) caused significant reduction in Sox2 mRNA and protein levels, loss of ES cell colony morphology, genome-wide changes in gene expression, and impaired neuroectodermal formation upon spontaneous differentiation to embryoid bodies. Together, these data identify a distal control region essential for Sox2 transcription in ES cells.

The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity

Hurley B, Lee D, Mott A, Wilton M, Liu J, Liu YC, Angers S, Coaker G, Guttman DS, Desveaux D

PLoS ONE 2014;9(12):e114921

PMID: 25503437

Abstract

Pseudomonas syringae subverts plant immune signalling through injection of type III secreted effectors (T3SE) into host cells. The T3SE HopF2 can disable Arabidopsis immunity through Its ADP-ribosyltransferase activity. Proteomic analysis of HopF2 interacting proteins identified a protein complex containing ATPases required for regulating stomatal aperture, suggesting HopF2 may manipulate stomatal immunity. Here we report HopF2 can inhibit stomatal immunity independent of its ADP-ribosyltransferase activity. Transgenic expression of HopF2 in Arabidopsis inhibits stomatal closing in response to P. syringae and increases the virulence of surface inoculated P. syringae. Further, transgenic expression of HopF2 inhibits flg22 induced reactive oxygen species production. Intriguingly, ADP-ribosyltransferase activity is dispensable for inhibiting stomatal immunity and flg22 induced reactive oxygen species. Together, this implies HopF2 may be a bifunctional T3SE with ADP-ribosyltransferase activity required for inhibiting apoplastic immunity and an independent function required to inhibit stomatal immunity.

Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences

Nguyen Ba AN, Strome B, Hua JJ, Desmond J, Gagnon-Arsenault I, Weiss EL, Landry CR, Moses AM

PLoS Comput. Biol. 2014 Dec;10(12):e1003977

PMID: 25474245

Abstract

Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication.

Standing genetic variation in host preference for mutualist microbial symbionts

Simonsen AK, Stinchcombe JR

Proc. Biol. Sci. 2014 Dec;281(1797)

PMID: 25355477

Abstract

Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism-the interaction between legumes and nitrogen-fixing soil symbionts-we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host’s preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations.

Comparative analyses of C₄ and C₃ photosynthesis in developing leaves of maize and rice

Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T, Nunes-Nesi A, Arrivault S, Dedow LK, Bryant DW, Zhou W, Xu J, Weissmann S, Studer A, Li P, Zhang C, LaRue T, Shao Y, Ding Z, Sun Q, Patel RV, Turgeon R, Zhu X, Provart NJ, Mockler TC, Fernie AR, Stitt M, Liu P, Brutnell TP

Nat. Biotechnol. 2014 Nov;32(11):1158-65

PMID: 25306245

Abstract

C₄ and C₃ photosynthesis differ in the efficiency with which they consume water and nitrogen. Engineering traits of the more efficient C₄ photosynthesis into C₃ crops could substantially increase crop yields in hot, arid conditions. To identify differences between C₄ and C₃ photosynthetic mechanisms, we profiled metabolites and gene expression in the developing leaves of Zea mays (maize), a C₄ plant, and Oryza sativa (rice), a C₃ plant, using a statistical method named the unified developmental model (UDM). Candidate cis-regulatory elements and transcription factors that might regulate photosynthesis were identified, together with differences between C₄ and C₃ nitrogen and carbon metabolism. The UDM algorithms could be applied to analyze and compare development in other species. These data sets together with community viewers to access and mine them provide a resource for photosynthetic research that will inform efforts to engineer improvements in carbon fixation in economically valuable grass crops.

Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling

Barchet GL, Dauwe R, Guy RD, Schroeder WR, Soolanayakanahally RY, Campbell MM, Mansfield SD

Tree Physiol. 2014 Nov;34(11):1203-19

PMID: 24178982

Abstract

Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water.