Found in translation: high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat

Schreiber KJ, Nasmith CG, Allard G, Singh J, Subramaniam R, Desveaux D

Mol. Plant Microbe Interact. 2011 Jun;24(6):640-8

PubMed PMID: 21303209

Abstract

Despite the tremendous economic impact of cereal crop pathogens such as the fungus Fusarium graminearum, the development of strategies for enhanced crop protection is hampered by complex host genetics and difficulties in performing high-throughput analyses. To bypass these challenges, we have developed an assay in which the interaction between F. graminearum and the model plant Arabidopsis thaliana is monitored in liquid media in 96-well plates. In this assay, fungal infection is associated with the development of dark lesion-like spots on the cotyledons of Arabidopsis seedlings by 4 days postinoculation. These symptoms can be alleviated by the application of known defense-activating small molecules and in previously described resistant host genetic backgrounds. Based on this infection phenotype, we conducted a small-scale chemical screen to identify small molecules that protect Arabidopsis seedlings from infection by F. graminearum. We identified sulfamethoxazole and the indole alkaloid gramine as compounds with strong protective activity in the liquid assay. Remarkably, these two chemicals also significantly reduced the severity of F. graminearum infection in wheat. As such, the Arabidopsis-based liquid assay represents a biologically relevant surrogate system for high-throughput studies of agriculturally important plant-pathogen interactions.

Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster

Gonsalves SE, Moses AM, Razak Z, Robert F, Westwood JT

PLoS ONE 2011;6(1):e15934

PubMed PMID: 21264254

Abstract

During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

PhyloPro: a web-based tool for the generation and visualization of phylogenetic profiles across Eukarya

Xiong X, Song H, On T, Lochovsky L, Provart NJ, Parkinson J

Bioinformatics 2011 Mar;27(6):877-8

PubMed PMID: 21252074

Abstract

SUMMARY: With increasing numbers of eukaryotic genome sequences, phylogenetic profiles of eukaryotic genes are becoming increasingly informative. Here, we introduce a new web-tool Phylopro (http://compsysbio.org/phylopro/), which uses the 120 available eukaryotic genome sequences to visualize the evolutionary trajectories of user-defined subsets of model organism genes. Applied to pathways or complexes, PhyloPro allows the user to rapidly identify core conserved elements of biological processes together with those that may represent lineage-specific innovations. PhyloPro thus provides a valuable resource for the evolutionary and comparative studies of biological systems.

ePlant and the 3D data display initiative: integrative systems biology on the world wide web

Fucile G, Di Biase D, Nahal H, La G, Khodabandeh S, Chen Y, Easley K, Christendat D, Kelley L, Provart NJ

PLoS ONE 2011;6(1):e15237

PubMed PMID: 21249219

Abstract

Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user’s computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed “ePlant” (http://bar.utoronto.ca/eplant) – a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant’s protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the “3D Data Display Initiative” (http://3ddi.org).

Next-generation genomics of Pseudomonas syringae

O’Brien HE, Desveaux D, Guttman DS

Curr. Opin. Microbiol. 2011 Feb;14(1):24-30

PubMed PMID: 21233007

Abstract

The first wave of Pseudomonas syringae next-generation genomic studies has revealed insights into host-specific virulence and immunity, genome dynamics and evolution, and genetic and metabolic specialization. These studies have further enhanced our understanding of type III effector diversity, identified an atypical type III secretion system (T3SS) in a new clade of nonpathogenic P. syringae, identified metabolic pathways common to pathogens of woody hosts and revealed extensive genomic diversity among strains that infect common hosts. In general, these discoveries have illustrated the utility of draft genome sequencing for quickly and economically identifying candidate loci for more refined genetic and functional analyses.

Polymorphism, divergence, and the role of recombination in Saccharomyces cerevisiae genome evolution

Cutter AD, Moses AM

Mol. Biol. Evol. 2011 May;28(5):1745-54

PubMed PMID: 21199893

Abstract

A contentious issue in molecular evolution and population genetics concerns the roles of recombination as a facilitator of natural selection and as a potential source of mutational input into genomes. The budding yeast Saccharomyces cerevisiae, in particular, has injected both insights and confusion into this topic, as an early system subject to genomic analysis with subsequent conflicting reports. Here, we revisit the role of recombination in mutation and selection with recent genome-wide maps of population polymorphism and recombination for S. cerevisiae. We confirm that recombination-associated mutation does not leave a genomic signature in yeast and conclude that a previously observed, enigmatic, negative recombination-divergence correlation is largely a consequence of weak selection and other genomic covariates. We also corroborate the presence of biased gene conversion from patterns of polymorphism. Moreover, we identify significant positive relations between recombination and population polymorphism at putatively neutrally evolving sites, independent of other factors and the genomic scale of interrogation. We conclude that widespread natural selection across the yeast genome has left its imprint on segregating genetic variation, but that this signature is much weaker than in Drosophila and Caenorhabditis.

Calmodulin binding to Arabidopsis cyclic nucleotide gated ion channels

Abdel-Hamid H, Chin K, Shahinas D, Moeder W, Yoshioka K

Plant Signal Behav 2010 Sep;5(9):1147-9

PubMed PMID: 21150265

Abstract

Recently we have reported that the ?C-helix in the cyclic nucleotide binding domain (CNBD) is required for channel regulation and function of cyclic nucleotide gated ion channels (CNGCs) in Arabidopsis. A mutation at arginine 557 to cysteine (R557C) in the ?C-helix of the CNBD caused an alteration in channel regulation. Protein sequence alignments revealed that R557 is located in a region that is important for calmodulin (CaM) binding. It has been hypothesized that CaM negatively regulates plant CNGCs similar to their counter parts in animals. However, only a handful of studies has been published so far and we still do not have much information about the regulation of CNGCs by CaM. Here, we conducted in silico binding prediction of CaM and Arabidopsis CNGC12 (AtCNGC12) to further study the role of R557. Our analysis revealed that R557 forms salt bridges with both D79 and E83 in AtCaM1. Interestingly, a mutation of R557 to C causes the loss of these salt bridges. Our data further suggests that this alteration in CaM binding causes the observed altered channel regulation and that R557 plays an important role in CaM binding.

The developmental dynamics of the maize leaf transcriptome

Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP

Nat. Genet. 2010 Dec;42(12):1060-7

PubMed PMID: 21037569

Abstract

We have analyzed the maize leaf transcriptome using Illumina sequencing. We mapped more than 120 million reads to define gene structure and alternative splicing events and to quantify transcript abundance along a leaf developmental gradient and in mature bundle sheath and mesophyll cells. We detected differential mRNA processing events for most maize genes. We found that 64% and 21% of genes were differentially expressed along the developmental gradient and between bundle sheath and mesophyll cells, respectively. We implemented Gbrowse, an electronic fluorescent pictograph browser, and created a two-cell biochemical pathway viewer to visualize datasets. Cluster analysis of the data revealed a dynamic transcriptome, with transcripts for primary cell wall and basic cellular metabolism at the leaf base transitioning to transcripts for secondary cell wall biosynthesis and C(4) photosynthetic development toward the tip. This dataset will serve as the foundation for a systems biology approach to the understanding of photosynthetic development.