The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis

selected images from paperLumba S, Tsuchiya Y, Delmas F, Hezky J, Provart NJ, Shi Lu Q, McCourt P, Gazzarrini S

BMC Biol. 2012 ;10():8

PubMed PMID: 22348746

Abstract

BACKGROUND:
The embryonic temporal regulator FUSCA3 (FUS3) plays major roles in the establishment of embryonic leaf identity and the regulation of developmental timing. Loss-of-function mutations of this B3 domain transcription factor result in replacement of cotyledons with leaves and precocious germination, whereas constitutive misexpression causes the conversion of leaves into cotyledon-like organs and delays vegetative and reproductive phase transitions.

RESULTS:
Herein we show that activation of FUS3 after germination dampens the expression of genes involved in the biosynthesis and response to the plant hormone ethylene, whereas a loss-of-function fus3 mutant shows many phenotypes consistent with increased ethylene signaling. This FUS3-dependent regulation of ethylene signaling also impinges on timing functions outside embryogenesis. Loss of FUS3 function results in accelerated vegetative phase change, and this is again partially dependent on functional ethylene signaling. This alteration in vegetative phase transition is dependent on both embryonic and vegetative FUS3 function, suggesting that this important transcriptional regulator controls both embryonic and vegetative developmental timing.

CONCLUSION:
The results of this study indicate that the embryonic regulator FUS3 not only controls the embryonic-to-vegetative phase transition through hormonal (ABA/GA) regulation but also functions postembryonically to delay vegetative phase transitions by negatively modulating ethylene-regulated gene expression.

Pulmonary bacterial communities in surgically resected noncystic fibrosis bronchiectasis lungs are similar to those in cystic fibrosis

selected image from paperMaughan H, Cunningham KS, Wang PW, Zhang Y, Cypel M, Chaparro C, Tullis DE, Waddell TK, Keshavjee S, Liu M, Guttman DS, Hwang DM

Pulm Med 2012 ;2012():746358

PubMed PMID: 22448327

Abstract

Background. Recurrent bacterial infections play a key role in the pathogenesis of bronchiectasis, but conventional microbiologic methods may fail to identify pathogens in many cases. We characterized and compared the pulmonary bacterial communities of cystic fibrosis (CF) and non-CF bronchiectasis patients using a culture-independent molecular approach.

Methods. Bacterial 16S rRNA gene libraries were constructed from lung tissue of 10 non-CF bronchiectasis and 21 CF patients, followed by DNA sequencing of isolates from each library. Community characteristics were analyzed and compared between the two groups.

Results. A wide range of bacterial diversity was detected in both groups, with between 1 and 21 bacterial taxa found in each patient. Pseudomonas was the most common genus in both groups, comprising 49% of sequences detected and dominating numerically in 13 patients. Although Pseudomonas appeared to be dominant more often in CF patients than in non-CF patients, analysis of entire bacterial communities did not identify significant differences between these two groups.

Conclusions. Our data indicate significant diversity in the pulmonary bacterial community of both CF and non-CF bronchiectasis patients and suggest that this community is similar in surgically resected lungs of CF and non-CF bronchiectasis patients.

BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species

selected heat map images from paperPatel RV, Nahal HK, Breit R, Provart NJ

Plant J. 2012 Sep;71(6):1038-50

PubMed PMID: 22607031

Abstract

Large numbers of sequences are now readily available for many plant species, allowing easy identification of homologous genes. However, orthologous gene identification across multiple species is made difficult by evolutionary events such as whole-genome or segmental duplications. Several developmental atlases of gene expression have been produced in the past couple of years, and it may be possible to use these transcript abundance data to refine ortholog predictions. In this study, clusters of homologous genes between seven plant species – Arabidopsis, soybean, Medicago truncatula, poplar, barley, maize and rice – were identified. Following this, a pipeline to rank homologs within gene clusters by both sequence and expression profile similarity was devised by determining equivalent tissues between species, with the best expression profile match being termed the ‘expressolog’. Five electronic fluorescent pictograph (eFP) browsers were produced as part of this effort, to aid in visualization of gene expression data and to complement existing eFP browsers at the Bio-Array Resource (BAR). Within the eFP browser framework, these expression profile similarity rankings were incorporated into an Expressolog Tree Viewer to allow cross-species homolog browsing by both sequence and expression pattern similarity. Global analyses showed that orthologs with the highest sequence similarity do not necessarily exhibit the highest expression pattern similarity. Other orthologs may show different expression patterns, indicating that such genes may require re-annotation or more specific annotation. Ultimately, it is envisaged that this pipeline will aid in improvement of the functional annotation of genes and translational plant research.

Next-generation mapping of Arabidopsis genes

selected image from paperAustin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D, Zhang J, Fung P, Gong Y, Wang PW, McCourt P, Guttman DS

Plant J. 2011 Aug;67(4):715-25

PubMed PMID: 21518053

Abstract

Next-generation genomic sequencing technologies have made it possible to directly map mutations responsible for phenotypes of interest via direct sequencing. However, most mapping strategies proposed to date require some prior genetic analysis, which can be very time-consuming even in genetically tractable organisms. Here we present a de novo method for rapidly and robustly mapping the physical location of EMS mutations by sequencing a small pooled F? population. This method, called Next Generation Mapping (NGM), uses a chastity statistic to quantify the relative contribution of the parental mutant and mapping lines to each SNP in the pooled F? population. It then uses this information to objectively localize the candidate mutation based on its exclusive segregation with the mutant parental line. A user-friendly, web-based tool for performing NGM analysis is available at http://bar.utoronto.ca/NGM. We used NGM to identify three genes involved in cell-wall biology in Arabidopsis thaliana, and, in a power analysis, demonstrate success in test mappings using as few as ten F? lines and a single channel of Illumina Genome Analyzer data. This strategy can easily be applied to other model organisms, and we expect that it will also have utility in crops and any other eukaryote with a completed genome sequence.

A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion

selected images from paperLee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, Bartetzko V, Wang PW, Quach V, Lewis JD, Liu YC, Börnke F, Angers S, Wilde A, Guttman DS, Desveaux D

PLoS Pathog. 2012 Feb;8(2):e1002523

PubMed PMID: 22319451

Abstract

The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin and polymerized microtubules. We demonstrate that HopZ1a is an acetyltransferase activated by the eukaryotic co-factor phytic acid. Activated HopZ1a acetylates itself and tubulin. The conserved autoacetylation site of the YopJ / HopZ superfamily, K289, plays a critical role in both the avirulence and virulence function of HopZ1a. Furthermore, HopZ1a requires its acetyltransferase activity to cause a dramatic decrease in Arabidopsis thaliana microtubule networks, disrupt the plant secretory pathway and suppress cell wall-mediated defense. Together, this study supports the hypothesis that HopZ1a promotes virulence through cytoskeletal and secretory disruption.

Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2

Lewis JD, Wan J, Ford R, Gong Y, Fung P, Nahal H, Wang PW, Desveaux D, Guttman DS

BMC Genomics 2012 ;13():8

PubMed PMID: 22230763

Abstract

Background. Here we describe the application of next-generation sequencing to yeast two-hybrid interaction screens and develop Quantitative Interactor Screen Identification of protein-protein interactions is a fundamental aspect of understanding protein function. A commonly used method for identifying protein interactions is the yeast two-hybrid system.

Results. Here we describe the application of next-generation sequencing to yeast two-hybrid interaction screens and develop Quantitative Interactor Screen Sequencing (QIS-Seq). QIS-Seq provides a quantitative measurement of enrichment for each interactor relative to its frequency in the library as well as its general stickiness (non-specific binding). The QIS-Seq approach is scalable and can be used with any yeast two-hybrid screen and with any next-generation sequencing platform. The quantitative nature of QIS-Seq data make it amenable to statistical evaluation, and importantly, facilitates the standardization of experimental design, data collection, and data analysis. We applied QIS-Seq to identify the Arabidopsis thaliana MLO2 protein as a target of the Pseudomonas syringae type III secreted effector protein HopZ2. We validate the interaction between HopZ2 and MLO2 in planta and show that the interaction is required for HopZ2-associated virulence.

Conclusions. We demonstrate that QIS-Seq is a high-throughput quantitative interactor screen and validate MLO2 as an interactor and novel virulence target of the P. syringae type III secreted effector HopZ2.

Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data

Tang S, Gong Y, Edwards EA

PLoS ONE 2012;7(12):e52038

PubMed PMID: 23284863

Abstract

Typically, the assembly and closure of a complete bacterial genome requires substantial additional effort spent in a wet lab for gap resolution and genome polishing. Assembly is further confounded by subspecies polymorphism when starting from metagenome sequence data. In this paper, we describe an in silico gap-resolution strategy that can substantially improve assembly. This strategy resolves assembly gaps in scaffolds using pre-assembled contigs, followed by verification with read mapping. It is capable of resolving assembly gaps caused by repetitive elements and subspecies polymorphisms. Using this strategy, we realized the de novo assembly of the first two Dehalobacter genomes from the metagenomes of two anaerobic mixed microbial cultures capable of reductive dechlorination of chlorinated ethanes and chloroform. Only four additional PCR reactions were required even though the initial assembly with Newbler v. 2.5 produced 101 contigs within 9 scaffolds belonging to two Dehalobacter strains. By applying this strategy to the re-assembly of a recently published genome of Bacteroides, we demonstrate its potential utility for other sequencing projects, both metagenomic and genomic.

Chromosome fragile sites in Arabidopsis harbor matrix attachment regions that may be associated with ancestral chromosome rearrangement events

dela Paz JS, Stronghill PE, Douglas SJ, Saravia S, Hasenkampf CA, Riggs CD

PLoS Genet. 2012 Dec;8(12):e1003136

PubMed PMID: 23284301

Abstract

Mutations in the BREVIPEDICELLUS (BP) gene of Arabidopsis thaliana condition a pleiotropic phenotype featuring defects in internode elongation, the homeotic conversion of internode to node tissue, and downward pointing flowers and pedicels. We have characterized five mutant alleles of BP, generated by EMS, fast neutrons, x-rays, and aberrant T-DNA insertion events. Curiously, all of these mutagens resulted in large deletions that range from 140 kbp to over 900 kbp just south of the centromere of chromosome 4. The breakpoints of these mutants were identified by employing inverse PCR and DNA sequencing. The south breakpoints of all alleles cluster in BAC T12G13, while the north breakpoint locations are scattered. With the exception of a microhomology at the bp-5 breakpoint, there is no homology in the junction regions, suggesting that double-stranded breaks are repaired via non-homologous end joining. Southwestern blotting demonstrated the presence of nuclear matrix binding sites in the south breakpoint cluster (SBC), which is A/T rich and possesses a variety of repeat sequences. In situ hybridization on pachytene chromosome spreads complemented the molecular analyses and revealed heretofore unrecognized structural variation between the Columbia and Landsberg erecta genomes. Data mining was employed to localize other large deletions around the HY4 locus to the SBC region and to show that chromatin modifications in the region shift from a heterochromatic to euchromatic profile. Comparisons between the BP/HY4 regions of A. lyrata and A. thaliana revealed that several chromosome rearrangement events have occurred during the evolution of these two genomes. Collectively, the features of the region are strikingly similar to the features of characterized metazoan chromosome fragile sites, some of which are associated with karyotype evolution.

The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection

Indriolo E, Tharmapalan P, Wright SI, Goring DR

Plant Cell 2012 Nov;24(11):4607-20

PubMed PMID: 23204404

Abstract

Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been identified in several species across the Brassicaceae, less is known about the conservation of the SRK-activated cellular responses in the stigma, following self-pollen contact. The ARM Repeat Containing1 (ARC1) E3 ubiquitin ligase functions downstream of SRK for the self-incompatibility response in Brassica, but it has been suggested that ARC1 is not required in Arabidopsis species. Here, we surveyed the presence of ARC1 orthologs in several recently sequenced genomes from Brassicaceae species that had diversified ?20 to 40 million years ago. Surprisingly, the ARC1 gene was deleted in several species that had lost the self-incompatibility trait, suggesting that ARC1 may lose functionality in the transition to self-mating. To test the requirement of ARC1 in a self-incompatible Arabidopsis species, transgenic ARC1 RNA interference Arabidopsis lyrata plants were generated, and they exhibited reduced self-incompatibility responses resulting in successful fertilization. Thus, this study demonstrates a conserved role for ARC1 in the self-pollen rejection response within the Brassicaceae.