Functional Analysis of Kinases and Transcription Factors in Saccharomyces cerevisiae Using an Integrated Overexpression Library

Youn JY, Friesen H, Nguyen Ba AN, Liang W, Messier V, Cox MJ, Moses AM, Andrews B.

G3 (Bethesda) Published Mar 10, 2017
https://doi.org/10.1534/g3.116.038471

PMID: 28122947

Abstract

Kinases and transcription factors (TFs) are key modulators of important signaling pathways and their activities underlie the proper function of many basic cellular processes such as cell division, differentiation, and development. Changes in kinase and TF dosage are often associated with disease, yet a systematic assessment of the cellular phenotypes caused by the combined perturbation of kinases and TFs has not been undertaken. We used a reverse-genetics approach to study the phenotypic consequences of kinase and TF overexpression (OE) in the budding yeast, Saccharomyces cerevisiae We constructed a collection of strains expressing stably integrated inducible alleles of kinases and TFs and used a variety of assays to characterize the phenotypes caused by TF and kinase OE. We used the Synthetic Genetic Array (SGA) method to examine dosage-dependent genetic interactions (GIs) between 239 gain-of-function (OE) alleles of TFs and six loss-of-function (LOF) and seven OE kinase alleles, the former identifying Synthetic Dosage Lethal (SDL) interactions and the latter testing a GI we call Double Dosage Lethality (DDL). We identified and confirmed 94 GIs between 65 OE alleles of TFs and 9 kinase alleles. Follow-up experiments validated regulatory relationships between genetically interacting pairs (Cdc28-Stb1 and Pho85-Pdr1), suggesting that GI studies involving OE alleles of regulatory proteins will be a rich source of new functional information.

Navigating social and ethical challenges of biobanking for human microbiome research

Chuong KH, Hwang DM, Tullis DE, Waters VJ, Yau YC, Guttman DS, O’Doherty KC.

BMC Med Ethics.
Published Jan 11, 2017
https://doi.org/10.1186/s12910-016-0160-y

PMID: 28077127

Abstract

BACKGROUND:
Biobanks are considered to be key infrastructures for research development and have generated a lot of debate about their ethical, legal and social implications (ELSI). While the focus has been on human genomic research, rapid advances in human microbiome research further complicate the debate.
DISCUSSION:
We draw on two cystic fibrosis biobanks in Toronto, Canada, to illustrate our points. The biobanks have been established to facilitate sample and data sharing for research into the link between disease progression and microbial dynamics in the lungs of pediatric and adult patients. We begin by providing an overview of some of the ELSI associated with human microbiome research, particularly on the implications for the broader society. We then discuss ethical considerations regarding the identifiability of samples biobanked for human microbiome research, and examine the issue of return of results and incidental findings. We argue that, for the purposes of research ethics oversight, human microbiome research samples should be treated with the same privacy considerations as human tissues samples. We also suggest that returning individual microbiome-related findings could provide a powerful clinical tool for care management, but highlight the need for a more grounded understanding of contextual factors that may be unique to human microbiome research.
CONCLUSIONS:
We revisit the ELSI of biobanking and consider the impact that human microbiome research might have. Our discussion focuses on identifiability of human microbiome research samples, and return of research results and incidental findings for clinical management.

A novel Filamentous Flower mutant suppresses brevipedicellus developmental defects and modulates glucosinolate and auxin levels

Scott J. Douglas, Baohua Li, Daniel J. Kliebenstein, Eiji Nambara, C. Daniel Riggs

PLoS ONE
Published: May 11, 2017
https://doi.org/10.1371/journal.pone.0177045

PMID:28493925

Abstract
BREVIPEDICELLUS (BP) encodes a class-I KNOTTED1-like homeobox (KNOX) transcription factor that plays a critical role in conditioning a replication competent state in the apical meristem, and it also governs growth and cellular differentiation in internodes and pedicels. To search for factors that modify BP signaling, we conducted a suppressor screen on bp er (erecta) plants and identified a mutant that ameliorates many of the pleiotropic defects of the parent line. Map based cloning and complementation studies revealed that the defect lies in the FILAMENTOUS FLOWER (FIL) gene, a member of the YABBY family of transcriptional regulators that contribute to meristem organization and function, phyllotaxy, leaf and floral organ growth and polarity, and are also known to repress KNOX gene expression. Genetic and cytological analyses of the fil-10 suppressor line indicate that the role of FIL in promoting growth is independent of its previously characterized influences on meristem identity and lateral organ polarity, and likely occurs non-cell-autonomously from superior floral organs. Transcription profiling of inflorescences revealed that FIL downregulates numerous transcription factors which in turn may subordinately regulate inflorescence architecture. In addition, FIL, directly or indirectly, activates over a dozen genes involved in glucosinolate production in part by activating MYB28, a known activator of many aliphatic glucosinolate biosynthesis genes. In the bp er fil-10 suppressor mutant background, enhanced expression of CYP71A13, AMIDASE1 (AMI) and NITRILASE genes suggest that auxin levels can be modulated by shunting glucosinolate metabolites into the IAA biosynthetic pathway, and increased IAA levels in the bp er fil-10 suppressor accompany enhanced internode and pedicel elongation. We propose that FIL acts to oppose KNOX1 gene function through a complex regulatory network that involves changes in secondary metabolites and auxin.

Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism

Peek J, Roman J, Moran GR, Christendat D

Mol Microbiol. 2017 Jan;103(1):39-54.

PMID: 27706847

Abstract

Quinate and shikimate can be degraded by a number of microbes. Dehydroshikimate dehydratases (DSDs) play a central role in this process, catalyzing the conversion of 3-dehydroshikimate to protocatechuate, a common intermediate of aromatic degradation pathways. DSDs have applications in metabolic engineering for the production of valuable protocatechuate-derived molecules. Although a number of Gram-negative bacteria are known to catabolize quinate and shikimate, only limited information exists on the quinate/shikimate catabolic enzymes found in these organisms. Here, we have functionally and structurally characterized a putative DSD designated QuiC1, which is present in some pseudomonads. The QuiC1 protein is not related by sequence with previously identified DSDs from the Gram-negative genus, Acinetobacter, but instead shows limited sequence identity in its N-terminal half with fungal DSDs. Analysis of a Pseudomonas aeruginosa quiC1 gene knock-out demonstrates that it is important for growth on either quinate or shikimate. The structure of a QuiC1 enzyme from P. putida reveals that the protein is a fusion of two distinct modules: an N-terminal sugar phosphate isomerase-like domain associated with DSD activity and a novel C-terminal hydroxyphenylpyruvate dioxygenase-like domain. The results of this study highlight the considerable diversity of enzymes that participate in quinate/shikimate catabolism in different microbes.

Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula

Herrbach V, Chirinos X, Rengel D, Agbevenou K, Vincent R, Pateyron S, Huguet S, Balzergue S, Pasha A, Provart N, Gough C, Bensmihen S.

J Exp Bot. 2017 Jan 10

PMID: 28073951

Abstract

Nodulation (Nod) factors (NFs) are symbiotic molecules produced by rhizobia that are essential for establishment of the rhizobium-legume endosymbiosis. Purified NFs can stimulate lateral root formation (LRF) in Medicago truncatula, but little is known about the molecular mechanisms involved. Using a combination of reporter constructs, pharmacological and genetic approaches, we show that NFs act on early steps of LRF in M. truncatula, independently of the ethylene signaling pathway and of the cytokinin receptor MtCRE1, but in interaction with auxin. We conducted a whole-genome transcriptomic study upon NF and/or auxin treatments, using a lateral root inducible system adapted for M. truncatula This revealed a large overlap between NF and auxin signaling and, more interestingly, synergistic interactions between these molecules. Three groups showing interaction effects were defined: group 1 contained more than 1500 genes responding specifically to the combinatorial treatment of NFs and auxin; group 2 comprised auxin-regulated genes whose expression was enhanced or antagonized by NFs; and in group 3 the expression of NF regulated genes was antagonized by auxin. Groups 1 and 2 were enriched in signaling and metabolic functions, which highlights important crosstalk between NF and auxin signaling for both developmental and symbiotic processes.

An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease

Morrow JM, Castiglione GM, Dungan SZ, Tang PL, Bhattacharyya N, Hauser FE, Chang BS.

FEBS Lett. 2017 Mar 30

PMID: 28369862

Abstract

Rhodopsin is the visual pigment that mediates dim-light vision in vertebrates and is a model system for the study of retinal disease. The majority of rhodopsin experiments are performed using bovine rhodopsin; however, recent evidence suggests that significant functional differences exist among mammalian rhodopsins. In this study, we identify differences in both thermal decay and light-activated retinal release rates between bovine and human rhodopsin and perform mutagenesis studies to highlight two clusters of substitutions that contribute to these differences. We also demonstrate that the retinitis pigmentosa-associated mutation G51A behaves differently in human rhodopsin compared to bovine rhodopsin and determine that the thermal decay rate of an ancestrally reconstructed mammalian rhodopsin displays an intermediate phenotype compared to the two extant pigments.

ccNET: Database of co-expression networks with functional modules for diploid and polyploid Gossypium

You Q, Xu W, Zhang K, Zhang L, Yi X, Yao D, Wang C, Zhang X, Zhao X, Provart NJ, Li F, Su Z.

Nucleic Acids Res. 2017 Jan 4;45(D1):D1090-D1099.

PMID: 28053168

Abstract

Plant genera with both diploid and polyploid species are a common evolutionary occurrence. Polyploids, especially allopolyploids such as cotton and wheat, are a great model system for heterosis research. Here, we have integrated genome sequences and transcriptome data of Gossypium species to construct co-expression networks and identified functional modules from different cotton species, including 1155 and 1884 modules in G. arboreum and G. hirsutum, respectively. We overlayed the gene expression results onto the co-expression network. We further provided network comparison analysis for orthologous genes across the diploid and allotetraploid Gossypium We also constructed miRNA-target networks and predicted PPI networks for both cotton species. Furthermore, we integrated in-house ChIP-seq data of histone modification (H3K4me3) together with cis-element analysis and gene sets enrichment analysis tools for studying possible gene regulatory mechanism in Gossypium species. Finally, we have constructed an online ccNET database (http://structuralbiology.cau.edu.cn/gossypium) for comparative gene functional analyses at a multi-dimensional network and epigenomic level across diploid and polyploid Gossypium species. The ccNET database will be beneficial for community to yield novel insights into gene/module functions during cotton development and stress response, and might be useful for studying conservation and diversity in other polyploid plants, such as T. aestivum and Brassica napus.

G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis

Olsen JB, Wong L, Deimling S, Miles A, Guo H, Li Y, Zhang Z, Greenblatt JF, Emili A, Tropepe V.

Stem Cell Reports. 2016 Sep 13;7(3):454-70

PMID: 27546533

Abstract

Proliferating progenitor cells undergo changes in competence to give rise to post-mitotic progeny of specialized function. These cell-fate transitions typically involve dynamic regulation of gene expression by histone methyltransferase (HMT) complexes. However, the composition, roles, and regulation of these assemblies in regulating cell-fate decisions in vivo are poorly understood. Using unbiased affinity purification and mass spectrometry, we identified the uncharacterized C2H2-like zinc finger protein ZNF644 as a G9a/GLP-interacting protein and co-regulator of histone methylation. In zebrafish, functional characterization of ZNF644 orthologs, znf644a and znf644b, revealed complementary roles in regulating G9a/H3K9me2-mediated gene silencing during neurogenesis. The non-overlapping requirements for znf644a and znf644b during retinal differentiation demarcate critical aspects of retinal differentiation programs regulated by differential G9a-ZNF644 associations, such as transitioning proliferating progenitor cells toward differentiation. Collectively, our data point to ZNF644 as a critical co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation.

Yeast two-hybrid interactions between Arabidopsis lyrata S Receptor Kinase and the ARC1 E3 ligase

Indriolo E, Goring DR.

Plant Signal Behav. 2016 Jun 2;11(6):e1188233

PMID: 27175603

Abstract

Here we describe protein-protein interactions between signaling components in the conserved self-incompatibility pathway from Brassica spp. and Arabidopsis lyrata. Previously, we had demonstrated that ARC1 is necessary in A. lyrata for the rejection of self-pollen by the self-incompatibility pathway. The results described here demonstrate that A. lyrata ARC1 interacts with A. lyrata S Receptor Kinase (SRK1) in the yeast 2-hybrid system. A. lyrata ARC1 also interacted with B. napus SRK910 illustrating that interactions in this pathway are conserved across species. Finally, we discuss how the more widely occurring interactions between SRK and ARC1-related family members may be modulated in vivo by expression and subcellular localization patterns resulting in a particular response.

Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology.

Baltrus DA, McCann HC, Guttman DS.

Mol Plant Pathol. 2017 Jan;18(1):152-168.

PMID: 27798954

Abstract

A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.