A defect in cell wall recycling confers antibiotic resistance and sensitivity in Staphylococcus aureus

Stephanie Tan, Kelvin Cho, Justin R. Nodwell

J Biol Chem 2022 Oct;298(10):102473. doi: 10.1016/j.jbc.2022.102473.

PMID: 36089064

Abstract

WalKR is a two-component system that is essential for viability in Gram-positive bacteria that regulates the all-important autolysins in cell wall homeostasis. Further investigation of this essential system is important for identifying ways to address antibiotic resistance. Here, we show that a T101M mutation in walR confers a defect in autolysis, a thickened cell wall, and decreased susceptibility to antibiotics that target lipid II cycle, a phenotype that is reminiscent of the clinical resistance form known as vancomycin intermediate-resistant Staphylococcus aureus. Importantly, this is accompanied by dramatic sensitization to tunicamycin. We demonstrate that this phenotype is due to partial collapse of a pathway consisting of autolysins, AtlA and Sle1, a transmembrane sugar permease, MurP, and GlcNAc recycling enzymes, MupG and MurQ. We suggest that this causes a shortage of substrate for the peptidoglycan biosynthesis enzyme MraY, causing it to be hypersensitive to competitive inhibition by tunicamycin. In conclusion, our results constitute a new molecular model for antibiotic sensitivity in S. aureus and a promising new route for antibiotic discovery.

A comparative study across the parasitic plants of Cuscuta subgenus Grammica (Convolvulaceae) reveals a possible loss of the plastid genome in its section Subulatae

Arjan Banerjee, Sasa Stefanovic

Planta 2023 Feb 24;257(4):66. doi: 10.1007/s00425-023-04099-y.

PMID: 36826697

Abstract

Most species in Cuscuta subgenus Grammica retain many photosynthesis-related plastid genes, generally under purifying selection. A group of holoparasitic species in section Subulatae may have lost their plastid genomes entirely. The c. 153 species of plants belonging to Cuscuta subgenus Grammica are all obligate stem parasites. However, some have completely lost the ability to conduct photosynthesis while others retain photosynthetic machinery and genes. The plastid genome that primarily encodes key photosynthesis genes functions as a bellwether for how reliant plants are on primary production. This research assembles and analyses 17 plastomes across Cuscuta subgenus Grammica with the aim of characterizing the state of the plastome in each of its sections. By comparing the structure and content of plastid genomes across the subgenus, as well as by quantifying the selection acting upon each gene, we reconstructed the patterns of plastome change within the phylogenetic context for this group. We found that species in 13 of the 15 sections that comprise Grammica retain the bulk of plastid photosynthesis genes and are thus hemiparasitic. The complete loss of photosynthesis can be traced to two clades: the entire section Subulatae and a complex of three species within section Ceratophorae. We were unable to recover any significant plastome sequences from section Subulatae, suggesting that plastomes in these species are either drastically reduced or lost entirely.

The Evolution of C4 Photosynthesis in Flaveria (Asteraceae): Insights from the Flaveria linearis Complex

 Shunsuke Adachi, Matt Stata, Duncan G Martin, Shifeng Cheng, Hongbing Liu, Xin-Guang Zhu, Rowan F Sage

Plant Physiol 2023 Jan 2;191(1):233-251. doi: 10.1093/plphys/kiac467.

PMID: 36200882

Abstract

Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.

Lung Allograft Microbiome Association with Gastroesophageal Reflux, Inflammation, and Allograft Dysfunction

Pierre H. H. Schneeberger, Chen Yang Kevin Zhang, Jessica Santilli, Bo Chen, Wei Xu, Youngho Lee, Zonelle Wijesinha Elaine Reguera-Nuñez, Noelle Yee, Musawir Ahmed, Kristen Boonstra, Rayoun Ramendra, Courtney W. Frankel, Scott M. Palmer  Jamie L. Todd , Tereza Martinu, Bryan Coburn

Am J Respir Crit Care Med 2022 Dec 15;206(12):1495-1507. doi: 10.1164/rccm.202110-2413OC.

PMID: 35876129

Abstract

Rationale: It remains unclear how gastroesophageal reflux disease (GERD) affects allograft microbial community composition in lung transplant recipients and its impact on lung allograft inflammation and function.

Objectives: Our objective was to compare the allograft microbiota in lung transplant recipients with or without clinically diagnosed GERD in the first year after transplant and assess associations between GERD, allograft microbiota, inflammation, and acute and chronic lung allograft dysfunction (ALAD and CLAD).

Methods: A total of 268 BAL samples were collected from 75 lung transplant recipients at a single transplant center every 3 months after transplant for 1 year. Ten transplant recipients from a separate transplant center provided samples before and after antireflux Nissen fundoplication surgery. Microbial community composition and density were measured using 16S ribosomal RNA gene sequencing and quantitative polymerase chain reaction, respectively, and inflammatory markers and bile acids were quantified.

Measurements and Main Results: We observed a range of allograft community composition with three discernible types (labeled community state types [CSTs] 1-3). Transplant recipients with GERD were more likely to have CST1, characterized by high bacterial density and relative abundance of the oropharyngeal colonizing genera Prevotella and Veillonella. GERD was associated with more frequent transitions to CST1. CST1 was associated with lower inflammatory cytokine concentrations than pathogen-dominated CST3 across the range of microbial densities observed. Cox proportional hazard models revealed associations between CST3 and the development of ALAD/CLAD. Nissen fundoplication decreased bacterial load and proinflammatory cytokines.

Conclusions: GERD was associated with a high bacterial density, Prevotella- and Veillonella-dominated CST1. CST3, but not CST1 or GERD, was associated with inflammation and early development of ALAD and CLAD. Nissen fundoplication was associated with a reduction in microbial density in BAL fluid samples, especially the CST1-specific genus, Prevotella.

Effect of faecal microbial transplant via colonoscopy in patients with severe obesity and insulin resistance: A randomized double-blind, placebo-controlled Phase 2 trial

Yasaman Ghorbani BSc, Katherine J. P. Schwenger PhD, Divya Sharma PhD, Hyejung Jung MSc, Jitender Yadav PhD, Wei Xu PhD, Wendy Lou PhD, Susan Poutanen MD, Susy S. Hota MD, Elena M. Comelli

Diabetes Obes Metab 2023 Feb;25(2):479-490. doi: 10.1111/dom.14891.

PMID: 36239189

Abstract

Aim: To assess the effects of faecal microbial transplant (FMT) from lean people to subjects with obesity via colonoscopy.

Material and methods: In a double-blind, randomized controlled trial, subjects with a body mass index ≥ 35 kg/m2 and insulin resistance were randomized, in a 1:1 ratio in blocks of four, to either allogenic (from healthy lean donor; n = 15) or autologous FMT (their own stool; n = 13) delivered in the caecum and were followed for 3 months. The main outcome was homeostatic model assessment of insulin resistance (HOMA-IR) and secondary outcomes were glycated haemoglobin levels, lipid profile, weight, gut hormones, endotoxin, appetite measures, intestinal microbiome (IM), metagenome, serum/faecal metabolites, quality of life, anxiety and depression scores.

Results: In the allogenic versus autologous groups, HOMA-IR and clinical variables did not change significantly, but IM and metabolites changed favourably (P < 0.05): at 1 month, Coprococcus, Bifidobacterium, Bacteroides and Roseburia increased, and Streptococcus decreased; at 3 months, Bacteroides and Blautia increased. Several species also changed significantly. For metabolites, at 1 month, serum kynurenine decreased and faecal indole acetic acid and butenylcarnitine increased, while at 3 months, serum isoleucine, leucine, decenoylcarnitine and faecal phenylacetic acid decreased. Metagenomic pathway representations and network analyses assessing relationships with clinical variables, metabolites and IM were significantly enhanced in the allogenic versus autologous groups. LDL and appetite measures improved in the allogenic (P < 0.05) but not in the autologous group.

Conclusions: Overall, in those with obeisty, allogenic FMT via colonoscopy induced favourable changes in IM, metabolites, pathway representations and networks even though other metabolic variables did not change. LDL and appetite variables may also benefit.

Elevated tyrosine results in the cytosolic retention of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase in Arabidopsis thaliana

Michael Kanaris, Jimmy Poulin, Dea Shahinas, Daniel Johnson, Valerie M. Crowley, Geoffrey Fucile, Nicholas Provart, Dinesh Christendat

Plant J 2022 Feb;109(4):789-803. doi: 10.1111/tpj.15590.

PMID: 34797933

Abstract

The shikimate pathway plays a central role in the biosynthesis of aromatic amino acids and specialized metabolites in plants. The first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) serves as a key regulatory point for the pathway in various organisms. These enzymes are important in regulating the shikimate pathway in multiple microbial systems. The mechanism of regulation of DAHPS is poorly understood in plants, and the role of tyrosine (Tyr) with respect to the three DAHPS isozymes from Arabidopsis thaliana was investigated. In vitro enzymatic analyses established that Tyr does not function as an allosteric regulator for the A. thaliana DAHPS isozymes. In contrast, Arabidopsis T-DNA insertional mutants for the DAHPS1 locus, dahps1, are hypersensitive to elevated Tyr. Tyr hypersensitivity can be reversed with tryptophan and phenylalanine supplementation, indicating that Tyr is affecting the shikimate pathway flux in the dahps1 mutant. Tyr treatment of Arabidopsis seedlings showed reduced accumulation of overexpressed DAHPS2 in the chloroplast. Further, bimolecular fluorescence complementation studies revealed that DAHPS2 interacts with a 14-3-3 protein in the cytosol, and this interaction is enhanced with Tyr treatment. This interaction with 14-3-3 may retain DAHPS2 in the cytosol, which prevents its ability to function in the chloroplast with elevated Tyr.

An exploration into the conversion of dominance to additive genetic variance in contrasting environments

Cameron P. So, Mia M. Sibolibane, Arthur E. Weis

Am J Bot 2022 Nov;109(11):1893-1905. doi: 10.1002/ajb2.16083.

PMID: 36219500

Abstract

Premise: The evolutionary response of a trait to environmental change depends upon the level of additive genetic variance. It has been long argued that sustained selection will tend to deplete additive genetic variance as favored alleles approach fixation. Non-additive genetic variance, due to interactions among alleles within and between loci, does not immediately contribute to an evolutionary response. However, shifts in the allele frequencies within and between interacting loci may convert non-additive variance into additive variance. Here we consider the possibility that an environmental shift may alter allelic interactions in ways that convert dominance into additive genetic variance.

Methods: We grew a pedigreed population of Brassica rapa in greenhouse and field conditions. The field conditions mimicked agricultural conditions from which the base population was drawn, while the greenhouse featured benign conditions. We used Bayesian models to estimate the additive, dominance, and maternal components of quantitative genetic variance. We also estimated genetic correlations across environments using parental breeding values.

Results: Although the additive genetic variance was elevated in the greenhouse condition, no consistent pattens emerged that would indicate a conversion of dominance variance. The unusually low genetic variance and broad confidence intervals for the variance estimates obtained through this analysis preclude definitive interpretations.

Conclusions: Further studies are needed to determine whether between-environment changes in additive genetic variance can be traced to conversion of dominance variance.

Genetic diversity and structure of a recent fish invasion: Tench ( Tinca tinca) in eastern North America

Thaïs A. Bernos, Sunčica Avlijaš, Jaclyn Hill, Olivier Morissette, Anthony Ricciardi, Nicholas E. Mandrak, Kenneth M. Jeffries

Evol Appl 2022 Dec 20;16(1):173-188. doi: 10.1111/eva.13520

PMID: 36699124

Abstract

Introduced and geographically expanding populations experience similar eco-evolutionary challenges, including founder events, genetic bottlenecks, and novel environments. Theory predicts that reduced genetic diversity resulting from such phenomena limits the success of introduced populations. Using 1900 SNPs obtained from restriction-site-associated DNA sequencing, we evaluated hypotheses related to the invasion history and connectivity of an invasive population of Tench (Tinca tinca), a Eurasian freshwater fish that has been expanding geographically in eastern North America for three decades. Consistent with the reported history of a single introduction event, our findings suggest that multiple introductions from distinct genetic sources are unlikely as Tench had a small effective population size (~114 [95% CI = 106-123] individuals), no strong population subdivision across time and space, and evidence of a recent genetic bottleneck. The large genetic neighbourhood size (220 km) and weak within-population genetic substructure suggested high connectivity across the invaded range, despite the relatively large area occupied. There was some evidence for a small decay in genetic diversity as the species expanded northward, but not southward, into new habitats. As eradicating the species within a ~112 km radius would be necessary to prevent recolonization, eradicating Tench is likely not feasible at watershed-and possibly local-scales. Management should instead focus on reducing abundance in priority conservation areas to mitigate adverse impacts. Our study indicates that introduced populations can thrive and exhibit relatively high levels of genetic diversity despite severe bottlenecks (<1.5% of the ancestral effective population size) and suggests that landscape heterogeneity and population demographics can generate variability in spatial patterns of genetic diversity within a single range expansion.

Characterization and predictive functional profiles on metagenomic 16S rRNA data of liver transplant recipients: A longitudinal study

Saranya Sivaraj, Julia K Copeland, Anshu Malik, Elisa Pasini, Marc Angeli, Amirhossein Azhie, Shahid Husain, Deepali Kumar, Johane Allard, David S Guttman, Atul Humar, Mamatha Bhat

Clin Transplant 2022 Feb;36(2):e14534. doi: 10.1111/ctr.14534

PMID: 34781411

Abstract

Long-term survival after Liver Transplantation (LT) is often compromised by infectious and metabolic complications. We aimed to delineate alterations in intestinal microbiome (IM) over time that could contribute to medical complications compromising long-term survival following LT. Fecal samples from LT recipients were collected at 3 months (3 M) and 6 months (6 M) post-LT. The bacterial DNA was extracted using E.Z.N.A. Stool DNA Kit and 16S rRNA gene sequencing at V4 hypervariable region was performed. DADA2 and Phyloseq was implemented to analyze the taxonomic composition. Differentially abundant taxa were identified by metagenomeSeq and LEfSe. Piphillin, an Inferred functional metagenomic analysis tool was used to study the bacterial functional content. For comparison, healthy samples were extracted from NCBI and analyzed similarly. The taxonomic & functional profiles of LT recipients were validated with metagenomic sequencing data from animals exposed to immunosuppressants using Venny. Our findings provide a new perspective on longitudinal increase in specific IM communities post-LT along with an increase in bacterial genes associated with metabolic and infectious disease.

The Brassica mature pollen and stigma proteomes: preparing to meet

Reneé Robinson, Vishwanath Sollapura, Philippe Couroux, Dave Sprott, Michael Ravensdale, Elizabeth Routly, Tim Xing, Laurian S. Robert

Plant J 2021 Sep;107(5):1546-1568. doi: 10.1111/tpj.15219

PMID: 33650121

Abstract

Successful pollination in Brassica brings together the mature pollen grain and stigma papilla, initiating an intricate series of molecular processes meant to eventually enable sperm cell delivery for fertilization and reproduction. At maturity, the pollen and stigma cells have acquired proteomes, comprising the primary molecular effectors required upon their meeting. Knowledge of the roles and global composition of these proteomes in Brassica species is largely lacking. To address this gap, gel-free shotgun proteomics was performed on the mature pollen and stigma of Brassica carinata, a representative of the Brassica family and its many crop species (e.g. Brassica napus, Brassica oleracea and Brassica rapa) that holds considerable potential as a bio-industrial crop. A total of 5608 and 7703 B. carinata mature pollen and stigma proteins were identified, respectively. The pollen and stigma proteomes were found to reflect not only their many common functional and developmental objectives, but also the important differences underlying their cellular specialization. Isobaric tag for relative and absolute quantification (iTRAQ) was exploited in the first analysis of a developing Brassicaceae stigma, and revealed 251 B. carinata proteins that were differentially abundant during stigma maturation, providing insight into proteins involved in the initial phases of pollination. Corresponding pollen and stigma transcriptomes were also generated, highlighting functional divergences between the proteome and transcriptome during different stages of pollen-stigma interaction. This study illustrates the investigative potential of combining the most comprehensive Brassicaceae pollen and stigma proteomes to date with iTRAQ and transcriptome data to provide a unique global perspective of pollen and stigma development and interaction.