Waste management and adult neurogenesis

Mattocks M, Tropepe V

Cell Stem Cell 2010 Oct;7(4):421-2

PubMed PMID: 20887944

Abstract

Dying cells are common in adult neurogenic niches, but how these cells are cleared remains uncertain. In this issue of Cell Stem Cell, Sierra et al. (2010) show that unactivated microglia assume the role of waste managers to eliminate cellular debris from apoptosing newborn cells in the hippocampus.

SA-ABA antagonism in defense responses

Moeder W, Ung H, Mosher S, Yoshioka K

Plant Signal Behav 2010 Oct;5(10):1231-3

PubMed PMID: 20861686

Abstract

Until recently, phytohormones were mostly studied separately. However, recent studies have suggested that the signaling pathways involved are highly interconnected. We recently reported the antagonistic effects of salicylic acid (SA) and abscisic acid (ABA) in the lesion mimic mutants, cpr22 and ssi4. After shifting these mutants from high humidity, where the lesion mimic phenotype is suppressed to permissive low humidity condition, both SA and ABA pathways were up-regulated. However, the increased levels of SA were able to block downstream ABA responses even though ABA signaling genes and endogenous ABA were elevated. Furthermore, these lesion mimic mutants displayed a partial ABA insensitivity with respect to germination, guard cell opening, and water loss. This increased water loss in detached mutant plants could also be mimicked by treating wild type plants with SA. An active SA analog, 5-chloro-salicylic acid also induced enhanced water loss, while an inactive analog, 4-hydroxy-benzoic acid, did not. Here, we report that the biological analogs of SA, the systemic acquired resistance (SAR) activators, BTH (benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester) and BIT (1,2-benzisothiazol-3(2H)-one1,1-dioxide), did not have the same effect as SA, suggesting that SA may have additional roles to defense, and that SAR activators may not mimic all SA effects.

Duplicate dmbx1 genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development

Wong L, Weadick CJ, Kuo C, Chang BS, Tropepe V

BMC Dev. Biol. 2010;10:100

PubMed PMID: 20860823

Abstract

BACKGROUND: The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome.

RESULTS: Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype.

CONCLUSION: Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement during midbrain and retinal neurogenesis, although their function is partially diverged. At the cellular level, Dmbx1 regulates cell cycle exit and differentiation of progenitor cells. The unexpected observation of putative post-duplication positive selection of teleost Dmbx1 genes, especially dmbx1a, and the differences in functionality between the mouse and zebrafish genes suggests that the teleost Dmbx1 genes may have evolved a diverged function in the regulation of neurogenesis.

Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth

Plett JM, Wilkins O, Campbell MM, Ralph SG, Regan S

Plant J. 2010 Nov;64(3):419-32

PubMed PMID: 20807210

Abstract

Trichomes are specialized epidermal cells that generally play a role in reducing transpiration and act as a deterrent to herbivory. In a screen of activation-tagged Populus tremula × Populus alba 717-1B4 trees, we identified a mutant line, fuzzy, with increased foliar trichome density. This mutant also had a 35% increase in growth rate and a 200% increase in the rate of photosynthesis as compared with wild-type poplar. The fuzzy mutant had significant resistance to feeding by larvae of the white-spotted tussock moth (Orgyia leucostigma), a generalist insect pest of poplar trees. The fuzzy trichome phenotype is attributable to activation tagging and increased expression of the gene encoding PtaMYB186, which is related to Arabidopsis thaliana MYB106, a known regulator of trichome initiation. The fuzzy phenotype can be recapitulated by overexpressing PtaMYB186 in poplar. PtaMYB186 overexpression results in reconfiguration of the poplar transcriptome, with changes in the transcript abundance of suites of genes that are related to trichome differentiation. It is notable that a plant with misexpression of a gene responsible for trichome development also had altered traits related to growth rate and pest resistance, suggesting that non-intuitive facets of plant development might be useful targets for plant improvement.

Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming

Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA

Plant Physiol. 2010 Oct;154(2):733-43

PubMed PMID: 20699402

Abstract

Ca(2+) and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca(2+). The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca(2+) modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca(2+) and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca(2+) uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca(2+) accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H(2)O(2) generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca(2+) channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca(2+) signaling provides evidence consistent with genetic studies of the relationship between Ca(2+) signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca(2+) uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition to its role (also linked to NO signaling) in pathogen defense responses and that this NO generation acts as a negative regulator during plant leaf senescence signaling.

Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context

Foxe JP, Stift M, Tedder A, Haudry A, Wright SI, Mable BK

Evolution 2010 Dec;64(12):3495-510

PubMed PMID: 20681985

Abstract

Theoretical and empirical comparisons of molecular diversity in selfing and outcrossing plants have primarily focused on long-term consequences of differences in mating system (between species). However, improving our understanding of the causes of mating system evolution requires ecological and genetic studies of the early stages of mating system transition. Here, we examine nuclear and chloroplast DNA sequences and microsatellite variation in a large sample of populations of Arabidopsis lyrata from the Great Lakes region of Eastern North American that show intra- and interpopulation variation in the degree of self-incompatibility and realized outcrossing rates. Populations show strong geographic clustering irrespective of mating system, suggesting that selfing either evolved multiple times or has spread to multiple genetic backgrounds. Diversity is reduced in selfing populations, but not to the extent of the severe loss of variation expected if selfing evolved due to selection for reproductive assurance in connection with strong founder events. The spread of self-compatibility in this region may have been favored as colonization bottlenecks following glaciation or migration from Europe reduced standing levels of inbreeding depression. However, our results do not suggest a single transition to selfing in this system, as has been suggested for some other species in the Brassicaceae.

Across-environment genetic correlations and the frequency of selective environments shape the evolutionary dynamics of growth rate in Impatiens capensis

Stinchcombe JR, Izem R, Heschel MS, McGoey BV, Schmitt J

Evolution 2010 Oct;64(10):2887-903

PubMed PMID: 20662920

Abstract

Trade-offs can exist within and across environments, and constrain evolutionary trajectories. To examine the effects of competition and resource availability on trade-offs, we grew individuals of recombinant inbred lines of Impatiens capensis in a factorial combination of five densities with two light environments (full light and neutral shade) and used a Bayesian logistic growth analysis to estimate intrinsic growth rates. To estimate across-environment constraints, we developed a variance decomposition approach to principal components analysis, which accounted for sample size, model-fitting, and within-RIL variation prior to eigenanalysis. We detected negative across-environment genetic covariances in intrinsic growth rates, although only under full-light. To evaluate the potential importance of these covariances, we surveyed natural populations of I. capensis to measure the frequency of different density environments across space and time. We combined our empirical estimates of across-environment genetic variance-covariance matrices and frequency of selective environments with hypothetical (yet realistic) selection gradients to project evolutionary responses in multiple density environments. Selection in common environments can lead to correlated responses to selection in rare environments that oppose and counteract direct selection in those rare environments. Our results highlight the importance of considering both the frequency of selective environments and the across-environment genetic covariances in traits simultaneously.

Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations

Anderson JB, Funt J, Thompson DA, Prabhu S, Socha A, Sirjusingh C, Dettman JR, Parreiras L, Guttman DS, Regev A, Kohn LM

Curr. Biol. 2010 Aug;20(15):1383-8

PubMed PMID: 20637622

Abstract

Divergent adaptation can be associated with reproductive isolation in speciation [1]. We recently demonstrated the link between divergent adaptation and the onset of reproductive isolation in experimental populations of the yeast Saccharomyces cerevisiae evolved from a single progenitor in either a high-salt or a low-glucose environment [2]. Here, whole-genome resequencing and comparative genome hybridization of representatives of three populations revealed 17 mutations, six of which explained the adaptive increases in mitotic fitness. In two populations evolved in high salt, two different mutations occurred in the proton efflux pump gene PMA1 and the global transcriptional repressor gene CYC8; the ENA genes encoding sodium efflux pumps were overexpressed once through expansion of this gene cluster and once because of mutation in the regulator CYC8. In the population from low glucose, one mutation occurred in MDS3, which modulates growth at high pH, and one in MKT1, a global regulator of mRNAs encoding mitochondrial proteins, the latter recapitulating a naturally occurring variant. A Dobzhansky-Muller (DM) incompatibility between the evolved alleles of PMA1 and MKT1 strongly depressed fitness in the low-glucose environment. This DM interaction is the first reported between experimentally evolved alleles of known genes and shows how reproductive isolation can arise rapidly when divergent selection is strong.

The p1D4-hrGFP II expression vector: a tool for expressing and purifying visual pigments and other G protein-coupled receptors

Morrow JM, Chang BS

Plasmid 2010 Nov;64(3):162-9

PubMed PMID: 20627111

Abstract

The heterologous expression of membrane proteins such as G protein-coupled receptors can be a notoriously difficult task. We have engineered an expression vector, p1D4-hrGFP II, in order to efficiently express visual pigments in mammalian cell culture. This expression vector is based on pIRES-hrGFP II (Stratagene), with the addition of a C-terminal 1D4 epitope tag for immunoblotting and immunoaffinity purification. This vector employs the CMV promoter and hrGFP II, a co-translated reporter gene. We measured the effectiveness of pIRES-hrGFP II in expressing bovine rhodopsin, and showed a 3.9- to 5.7-fold increase in expression as measured by absorbance spectroscopy as compared with the pMT vector, a common choice for visual pigment expression. We then expressed zebrafish RH2-1 using p1D4-hrGFP II in order to assess its utility in expressing cone opsins, known to be less stable and more difficult to express than bovine rhodopsin. We show a ?(280)/?(MAX) value of 3.3, one third of that reported in previous studies, suggesting increased expression levels and decreased levels of misfolded, non-functional visual pigment. Finally, we monitored HEK293T cell growth following transfection with pIRES-hrGFP II using fluorescence microscopy to illustrate the benefits of having a co-translated reporter during heterologous expression studies.