Tropepe V
Cell Stem Cell 2007 Nov;1(5):481-3
PubMed PMID: 18938741
CAGEF Centre for the Analysis of Genome Evolution & Function
genome sequencing, transcriptome, microbiome, metagenome, proteomics, metabolomics
Samis KE, Heath KD, Stinchcombe JR
Evolution 2008 Dec;62(12):2971-83
PubMed PMID: 18752603
Using seasonal cues to time reproduction appropriately is crucial for many organisms. Plants in particular often use photoperiod to signal the time to transition to flowering. Because seasonality varies latitudinally, adaptation to local climate is expected to result in corresponding clines in photoperiod-related traits. By experimentally manipulating photoperiod cues and measuring the flowering responses and photoperiod plasticity of 138 Eurasian accessions of Arabidopsis thaliana, we detected strong longitudinal but not latitudinal clines in flowering responses. The presence of longitudinal clines suggests that critical photoperiod cues vary among populations occurring at similar latitudes. Haplotypes at PHYC, a locus hypothesized to play a role in adaptation to light cues, were also longitudinally differentiated. Controlling for neutral population structure revealed that PHYC haplotype influenced flowering time; however, the distribution of PHYC haplotypes occurred in the opposite direction to the phenotypic cline, suggesting that loci other than PHYC are responsible for the longitudinal pattern in photoperiod response. Our results provide previously missing empirical support for the importance of PHYC in mediating photoperiod sensitivity in natural populations of A. thaliana. However, they also suggest that other loci and epistatic interactions likely play a role in the determination of flowering time and that the environmental factors influencing photoperiod in plants vary longitudinally as well as latitudinally.
Singh S, Stavrinides J, Christendat D, Guttman DS
Mol. Biol. Evol. 2008 Oct;25(10):2221-32
PubMed PMID: 18669580
The shikimate dehydrogenases (SDH) represent a widely distributed enzyme family with an essential role in secondary metabolism. This superfamily had been previously subdivided into 4 enzyme groups (AroE, YdiB, SdhL, and RifI), which show clear biochemical and functional differences ranging from amino acid biosynthesis to antibiotic production. Despite the importance of this group, little is known about how such essential enzymatic functions can evolve and diversify. We dissected the enzyme superfamily with a phylogenomic analysis of approximately 250 fully sequenced genomes, making use of previously characterized representatives from each enzyme class, and the key substrate-binding residues known to distinguish substrate specificity. We identified 5 major evolutionary and functional SDH subgroups and several other potentially unique functional classes within this complex enzyme family and then validated the functional distinctiveness of each group by characterizing the 5 SDH homologs found in Pseudomonas putida KT2440 biochemically. We identified an entirely novel functionally distinct subgroup, which we designated Ael1 (AroE-like1) and also delineated a new group of shikimate/quinate dehydrogenases (YdiB2), which is phylogenetically distinct from the previously described Escherichia coli YdiB. The combination of biochemical, phylogenetic, and genomic approaches has revealed the broad extent to which the SDH enzyme superfamily has diversified. Five functional groups were validated with the potential for at least 5 additional subgroups. Our analysis also identified a new SDH functional group, which appears to have evolved recently from an ancestral AroE, illustrating a very prominent role of horizontal transmission and neofunctionalizaton in the evolutionary and functional diversification of this enzyme family.
Baxter J, Moeder W, Urquhart W, Shahinas D, Chin K, Christendat D, Kang HG, Angelova M, Kato N, Yoshioka K
Plant J. 2008 Nov;56(3):457-69
PubMed PMID: 18643993
We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth beta-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K(+)-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the alpha-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general.
Stinchcombe JR, Agrawal AF, Hohenlohe PA, Arnold SJ, Blows MW
Evolution 2008 Sep;62(9):2435-40
PubMed PMID: 18616573
The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients, quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33 papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients, leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the gamma matrix, and modeling the evolution of populations on an adaptive landscape.
Lee S, Cheran E, Brudno M
Bioinformatics 2008 Jul;24(13):i59-67
PubMed PMID: 18586745
MOTIVATION: Recently, structural genomic variants have come to the forefront as a significant source of variation in the human population, but the identification of these variants in a large genome remains a challenge. The complete sequencing of a human individual is prohibitive at current costs, while current polymorphism detection technologies, such as SNP arrays, are not able to identify many of the large scale events. One of the most promising methods to detect such variants is the computational mapping of clone-end sequences to a reference genome.
RESULTS: Here, we present a probabilistic framework for the identification of structural variants using clone-end sequencing. Unlike previous methods, our approach does not rely on an a priori determined mapping of all reads to the reference. Instead, we build a framework for finding the most probable assignment of sequenced clones to potential structural variants based on the other clones. We compare our predictions with the structural variants identified in three previous studies. While there is a statistically significant correlation between the predictions, we also find a significant number of previously uncharacterized structural variants. Furthermore, we identify a number of putative cross-chromosomal events, primarily located proximally to the centromeres of the chromosomes.
AVAILABILITY: Our dataset, results and source code are available at http://compbio.cs.toronto.edu/structvar/.
Ma W, Guttman DS
Curr. Opin. Plant Biol. 2008 Aug;11(4):412-9
PubMed PMID: 18585954
Coevolutionary interactions between plants and their bacterial and eukaryotic pathogens are mediated by virulence effectors. These effectors face the daunting challenge of carrying out virulence functions, while also potentially exposing the pathogen to host defense systems. Very strong selective pressures are imposed by these competing roles, and the subsequent genetic changes leave their footprints in the extant allelic variation. This review examines the evolutionary processes that drive pathogen-host interactions as revealed by the genetic signatures left in virulence effectors, and speculate on the different pressures imposed on bacterial versus eukaryotic pathogens. We find numerous instances of positive selection for new allelic forms, and diversifying selection for genetic variability, which results in altered host-pathogen interactions. We also describe how the genetic structure of both bacterial and eukaryotic virulence effectors may contribute to their rapid generation and turnover.
Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR
Plant Physiol. 2008 Aug;147(4):2084-95
PubMed PMID: 18552232
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.
Cutter AD, Wasmuth JD, Washington NL
Genetics 2008 Apr;178(4):2093-104
PubMed PMID: 18430935
The evolution of self-fertilization can mediate pronounced changes in genomes as a by-product of a drastic reduction in effective population size and the concomitant accumulation of slightly deleterious mutations by genetic drift. In the nematode genus Caenorhabditis, a highly selfing lifestyle has evolved twice independently, thus permitting an opportunity to test for the effects of mode of reproduction on patterns of molecular evolution on a genomic scale. Here we contrast rates of nucleotide substitution and codon usage bias among thousands of orthologous groups of genes in six species of Caenorhabditis, including the classic model organism Caenorhabditis elegans. Despite evidence that weak selection on synonymous codon usage is pervasive in the history of all species in this genus, we find little difference among species in the patterns of codon usage bias and in replacement-site substitution. Applying a model of relaxed selection on codon usage to the C. elegans and C. briggsae lineages suggests that self-fertilization is unlikely to have evolved more than approximately 4 million years ago, which is less than a quarter of the time since they shared a common ancestor with outcrossing species. We conclude that the profound changes in mating behavior, physiology, and developmental mechanisms that accompanied the transition from an obligately outcrossing to a primarily selfing mode of reproduction evolved in the not-too-distant past.
Lenkic LE, Wolfe JM, Chang BS, Tobe SS
J. Insect Physiol. 2008 Jun;54(6):931-8
PubMed PMID: 18406421
The viviparous cockroach, Diploptera punctata, has been a valuable model organism for studies of the regulation of reproduction by juvenile hormone (JH) in insects. As a result of its truly viviparous mode of reproduction, precise regulation of JH biosynthesis and reproduction is required for production of offspring, providing a model system for the study of the relationship between JH production and oocyte growth and maturation. Most studies to date have focused on individuals isolated from a Hawaiian population of this species. A new population of this cockroach was found in Nakorn Pathom, Thailand, which demonstrated striking differences in cuticle pigmentation and mating behaviours, suggesting possible physiological differences between the two populations. To better characterize these differences, rates of JH release and oocyte growth were measured during the first gonadotrophic cycle. The Thai population was found to show significantly earlier increases in the rate of JH release, and oocyte development as compared with the Hawaiian population. Breeding experiments to determine the degree of interfertility between the two populations demonstrated greatly reduced fertility in crosses between the two populations. Additionally, levels of genetic divergence between the two populations estimated by sequencing a fragment of the mitochondrial 16S rRNA gene were surprisingly high. The significant differences in physiology and mating behaviours, combined with the reduced interfertility and high levels of sequence divergence, suggest that these two populations of D. punctata are quite distinct, and may even be in the process of speciation. Moreover, these studies have important implications for the study of JH function in the reproductive cycle of insects, as differences in timing of rates of JH biosynthesis may suggest a process of heterochrony in reproduction between the two populations.