Publications

ccNET: Database of co-expression networks with functional modules for diploid and polyploid Gossypium

You Q, Xu W, Zhang K, Zhang L, Yi X, Yao D, Wang C, Zhang X, Zhao X, Provart NJ, Li F, Su Z.

Nucleic Acids Res. 2017 Jan 4;45(D1):D1090-D1099.

PMID: 28053168

Abstract

Plant genera with both diploid and polyploid species are a common evolutionary occurrence. Polyploids, especially allopolyploids such as cotton and wheat, are a great model system for heterosis research. Here, we have integrated genome sequences and transcriptome data of Gossypium species to construct co-expression networks and identified functional modules from different cotton species, including 1155 and 1884 modules in G. arboreum and G. hirsutum, respectively. We overlayed the gene expression results onto the co-expression network. We further provided network comparison analysis for orthologous genes across the diploid and allotetraploid Gossypium We also constructed miRNA-target networks and predicted PPI networks for both cotton species. Furthermore, we integrated in-house ChIP-seq data of histone modification (H3K4me3) together with cis-element analysis and gene sets enrichment analysis tools for studying possible gene regulatory mechanism in Gossypium species. Finally, we have constructed an online ccNET database (http://structuralbiology.cau.edu.cn/gossypium) for comparative gene functional analyses at a multi-dimensional network and epigenomic level across diploid and polyploid Gossypium species. The ccNET database will be beneficial for community to yield novel insights into gene/module functions during cotton development and stress response, and might be useful for studying conservation and diversity in other polyploid plants, such as T. aestivum and Brassica napus.

G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis

Olsen JB, Wong L, Deimling S, Miles A, Guo H, Li Y, Zhang Z, Greenblatt JF, Emili A, Tropepe V.

Stem Cell Reports. 2016 Sep 13;7(3):454-70

PMID: 27546533

Abstract

Proliferating progenitor cells undergo changes in competence to give rise to post-mitotic progeny of specialized function. These cell-fate transitions typically involve dynamic regulation of gene expression by histone methyltransferase (HMT) complexes. However, the composition, roles, and regulation of these assemblies in regulating cell-fate decisions in vivo are poorly understood. Using unbiased affinity purification and mass spectrometry, we identified the uncharacterized C2H2-like zinc finger protein ZNF644 as a G9a/GLP-interacting protein and co-regulator of histone methylation. In zebrafish, functional characterization of ZNF644 orthologs, znf644a and znf644b, revealed complementary roles in regulating G9a/H3K9me2-mediated gene silencing during neurogenesis. The non-overlapping requirements for znf644a and znf644b during retinal differentiation demarcate critical aspects of retinal differentiation programs regulated by differential G9a-ZNF644 associations, such as transitioning proliferating progenitor cells toward differentiation. Collectively, our data point to ZNF644 as a critical co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation.

Yeast two-hybrid interactions between Arabidopsis lyrata S Receptor Kinase and the ARC1 E3 ligase

Indriolo E, Goring DR.

Plant Signal Behav. 2016 Jun 2;11(6):e1188233

PMID: 27175603

Abstract

Here we describe protein-protein interactions between signaling components in the conserved self-incompatibility pathway from Brassica spp. and Arabidopsis lyrata. Previously, we had demonstrated that ARC1 is necessary in A. lyrata for the rejection of self-pollen by the self-incompatibility pathway. The results described here demonstrate that A. lyrata ARC1 interacts with A. lyrata S Receptor Kinase (SRK1) in the yeast 2-hybrid system. A. lyrata ARC1 also interacted with B. napus SRK910 illustrating that interactions in this pathway are conserved across species. Finally, we discuss how the more widely occurring interactions between SRK and ARC1-related family members may be modulated in vivo by expression and subcellular localization patterns resulting in a particular response.

Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology.

Baltrus DA, McCann HC, Guttman DS.

Mol Plant Pathol. 2017 Jan;18(1):152-168.

PMID: 27798954

Abstract

A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.

NKT Cell-Deficient Mice Harbor an Altered Microbiota That Fuels Intestinal Inflammation during Chemically Induced Colitis

Selvanantham T, Lin Q, Guo CX, Surendra A, Fieve S, Escalante NK, Guttman DS, Streutker CJ, Robertson SJ, Philpott DJ, Mallevaey T.

J Immunol. 2016 Dec 1;197(11):4464-4472.

PMID: 27799307

Abstract

NKT cells are unconventional T cells that respond to self and microbe-derived lipid and glycolipid Ags presented by the CD1d molecule. Invariant NKT (iNKT) cells influence immune responses in numerous diseases. Although only a few studies have examined their role during intestinal inflammation, it appears that iNKT cells protect from Th1-mediated inflammation but exacerbate Th2-mediated inflammation. Studies using iNKT cell-deficient mice and chemically induced dextran sodium sulfate (DSS) colitis have led to inconsistent results. In this study, we show that CD1d-deficient mice, which lack all NKT cells, harbor an altered intestinal microbiota that is associated with exacerbated intestinal inflammation at steady-state and following DSS treatment. This altered microbiota, characterized by increased abundance of the bacterial phyla Proteobacteria, Deferribacteres, and TM7, among which the mucin-eating Mucispirillum, as well as members of the genus Prevotella and segmented filamentous bacteria, was transmissible upon fecal transplant, along with the procolitogenic phenotype. Our results also demonstrate that this proinflammatory microbiota influences iNKT cell function upon activation during DSS colitis. Collectively, alterations of the microbiota have a major influence on colitis outcome and therefore have to be accounted for in such experimental settings and in studies focusing on iNKT cells.

Image-Based Quantification of Plant Immunity and Disease

Laflamme B, Middleton M, Lo T, Desveaux D, Guttman DS.

Mol Plant Microbe Interact. 2016 Dec;29(12):919-924.

PMID: 27996374

Abstract

Measuring the extent and severity of disease is a critical component of plant pathology research and crop breeding. Unfortunately, existing visual scoring systems are qualitative, subjective, and the results are difficult to transfer between research groups, while existing quantitative methods can be quite laborious. Here, we present plant immunity and disease image-based quantification (PIDIQ), a quantitative, semi-automated system to rapidly and objectively measure disease symptoms in a biologically relevant context. PIDIQ applies an ImageJ-based macro to plant photos in order to distinguish healthy tissue from tissue that has yellowed due to disease. It can process a directory of images in an automated manner and report the relative ratios of healthy to diseased leaf area, thereby providing a quantitative measure of plant health that can be statistically compared with appropriate controls. We used the Arabidopsis thaliana-Pseudomonas syringae model system to show that PIDIQ is able to identify both enhanced plant health associated with effector-triggered immunity as well as elevated disease symptoms associated with effector-triggered susceptibility. Finally, we show that the quantitative results provided by PIDIQ correspond to those obtained via traditional in planta pathogen growth assays. PIDIQ provides a simple and effective means to nondestructively quantify disease from whole plants and we believe it will be equally effective for monitoring disease on excised leaves and stems.

Oral Vancomycin Followed by Fecal Transplantation Versus Tapering Oral Vancomycin Treatment for Recurrent Clostridium difficile Infection: An Open-Label, Randomized Controlled Trial

Hota SS, Sales V, Tomlinson G, Salpeter MJ, McGeer A, Coburn B, Guttman DS, Low DE, Poutanen SM.

Clin Infect Dis. 2017 Feb 1;64(3):265-271

PMID: 28011612

Abstract

BACKGROUND:Fecal transplantation (FT) is a promising treatment for recurrent Clostridium difficile infection (CDI), but its true effectiveness remains unknown. We compared 14 days of oral vancomycin followed by a single FT by enema with oral vancomycin taper (standard of care) in adult patients experiencing acute recurrence of CDI.

METHODS:In a phase 2/3, single-center, open-label trial, participants from Ontario, Canada, experiencing recurrence of CDI were randomly assigned in a 1:1 ratio to 14 days of oral vancomycin treatment followed by a single 500-mL FT by enema, or a 6-week taper of oral vancomycin. Patients with significant immunocompromise, history of fulminant CDI, or irreversible bleeding disorders were excluded. The primary endpoint was CDI recurrence within 120 days. Microbiota analysis was performed on fecal filtrate from donors and stool samples from FT recipients, as available.

RESULTS:The study was terminated at the interim analysis after randomizing 30 patients. Nine of 16 (56.2%) patients who received FT and 5 of 12 (41.7%) in the vancomycin taper group experienced recurrence of CDI, corresponding with symptom resolution in 43.8% and 58.3%, respectively. Fecal microbiota analysis of 3 successful FT recipients demonstrated increased diversity. A futility analysis did not support continuing the study. Adverse events were similar in both groups and uncommon.

CONCLUSIONS:In patients experiencing an acute episode of recurrent CDI, a single FT by enema was not significantly different from oral vancomycin taper in reducing recurrent CDI. Further research is needed to explore optimal donor selection, FT preparation, route, timing, and number of administrations.

Navigating social and ethical challenges of biobanking for human microbiome research.

Chuong KH, Hwang DM, Tullis DE, Waters VJ, Yau YC, Guttman DS, O’Doherty KC.

BMC Med Ethics. 2017 Jan 11;18(1):1

PMID: 28077127

Abstract

BACKGROUND:Biobanks are considered to be key infrastructures for research development and have generated a lot of debate about their ethical, legal and social implications (ELSI). While the focus has been on human genomic research, rapid advances in human microbiome research further complicate the debate.

DISCUSSION:We draw on two cystic fibrosis biobanks in Toronto, Canada, to illustrate our points. The biobanks have been established to facilitate sample and data sharing for research into the link between disease progression and microbial dynamics in the lungs of pediatric and adult patients. We begin by providing an overview of some of the ELSI associated with human microbiome research, particularly on the implications for the broader society. We then discuss ethical considerations regarding the identifiability of samples biobanked for human microbiome research, and examine the issue of return of results and incidental findings. We argue that, for the purposes of research ethics oversight, human microbiome research samples should be treated with the same privacy considerations as human tissues samples. We also suggest that returning individual microbiome-related findings could provide a powerful clinical tool for care management, but highlight the need for a more grounded understanding of contextual factors that may be unique to human microbiome research.

CONCLUSIONS:We revisit the ELSI of biobanking and consider the impact that human microbiome research might have. Our discussion focuses on identifiability of human microbiome research samples, and return of research results and incidental findings for clinical management.

Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases

Seto D, Koulena N, Lo T, Menna A, Guttman DS, Desveaux D.

Nat Plants. 2017 Mar 13;3:17027

PMID: 28288096

Abstract

Nucleotide-binding domain and leucine-rich repeat domain-containing (NLR) proteins are sentinels of plant immunity that monitor host proteins for perturbations induced by pathogenic effector proteins. Here we show that the Arabidopsis ZAR1 NLR protein requires the ZRK3 kinase to recognize the Pseudomonas syringae type III effector (T3E) HopF2a. These results support the hypothesis that ZAR1 associates with an expanded ZRK protein family to broaden its effector recognition spectrum.

Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios

Tun HM, Konya T, Takaro TK, Brook JR, Chari R, Field CJ, Guttman DS, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Sears MR, Scott JA, Kozyrskyj AL; CHILD Study Investigators.

Microbiome. 2017 Apr 6;5(1):40

PMID: 28381231

Abstract

BACKGROUND:Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. Since there is some evidence that pets also alter the gut microbial composition of infants, changes to the gut microbiome are putative pathways by which pet exposure can reduce these risks to health. To investigate the impact of pre- and postnatal pet exposure on infant gut microbiota following various birth scenarios, this study employed a large subsample of 746 infants from the Canadian Healthy Infant Longitudinal Development Study (CHILD) cohort, whose mothers were enrolled during pregnancy between 2009 and 2012. Participating mothers were asked to report on household pet ownership at recruitment during the second or third trimester and 3 months postpartum. Infant gut microbiota were profiled with 16S rRNA sequencing from faecal samples collected at the mean age of 3.3 months. Two categories of pet exposure (i) only during pregnancy and (ii) pre- and postnatally were compared to no pet exposure under different birth scenarios.

RESULTS:Over half of studied infants were exposed to at least one furry pet in the prenatal and/or postnatal periods, of which 8% were exposed in pregnancy alone and 46.8% had exposure during both time periods. As a common effect in all birth scenarios, pre- and postnatal pet exposure enriched the abundance of Oscillospira and/or Ruminococcus (P < 0.05) with more than a twofold greater likelihood of high abundance. Among vaginally born infants with maternal intrapartum antibiotic prophylaxis exposure, Streptococcaceae were substantially and significantly reduced by pet exposure (P < 0.001, FDRp = 0.03), reflecting an 80% decreased likelihood of high abundance (OR 0.20, 95%CI, 0.06-0.70) for pet exposure during pregnancy alone and a 69% reduced likelihood (OR 0.31, 95%CI, 0.16-0.58) for exposure in the pre- and postnatal time periods. All of these associations were independent of maternal asthma/allergy status, siblingship, breastfeeding exclusivity and other home characteristics.

CONCLUSIONS:The impact of pet ownership varies under different birth scenarios; however, in common, exposure to pets increased the abundance of two bacteria, Ruminococcus and Oscillospira, which have been negatively associated with childhood atopy and obesity.