Publications

New BAR Tools for Mining Expression Data and Exploring Cis-Elements in Arabidopsis thaliana

Austin RS, Hiu S, Waese J, Ierullo M, Pasha A, Wang T, Fan J, Foong C, Breit R, Desveaux D, Moses A, Provart NJ

Plant J. 2016 Jul;

PMID: 27401965

Abstract

Identifying sets of genes that are specifically expressed in certain tissues or in response to an environmental stimulus is useful for designing reporter constructs, generating gene expression markers, or for understanding gene regulatory networks. We have developed an easy-to-use online tool for defining a desired expression profile (a modification of our Expression Angler program), which can then be used to identify genes exhibiting patterns of expression that match this profile as closely as possible. Further, we have developed another online tool, Cistome, for predicting or exploring cis-elements in the promoters of sets of co-expressed genes identified by such a method, or by other methods. We present two use cases for these tools, which are freely available on the Bio-Analytic Resource at http://BAR.utoronto.ca. This article is protected by copyright. All rights reserved.

The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling

Zhou X, Zhang ZL, Park J, Tyler L, Yusuke J, Qiu K, Nam EA, Lumba S, Desveaux D, McCourt P, Kamiya Y, Sun TP

Plant Physiol. 2016 Aug;171(4):2760-70

PMID: 27255484

Abstract

The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.

The HopF family of Pseudomonas syringae type III secreted effectors

Lo T, Koulena N, Seto D, Guttman DS, Desveaux D

Mol. Plant Pathol. 2016 Apr;

PMID: 27061875

Abstract

Pseudomonas syringae is a bacterial phytopathogen that utilizes the type III secretion system to inject effector proteins into plant host cells. P. syringae can infect a wide range of plant hosts including agronomically-important crops such as tomatoes and beans. The ability of P. syringae to infect such numerous hosts is due, in part, to the diversity of effectors employed by this phytopathogen. Over 60 different effector families exist in P. syringae, one such family is HopF, which contains over 100 distinct alleles. Despite this diversity, research has focused on only two members of this family: HopF1 from P. syringae pathovar phaseolicola 1449B and HopF2 from P. syringae pathovar tomato DC3000. In this study, we review the research on HopF family members including their host targets and molecular mechanisms of immunity suppression, and their enzymatic function. We also provide a phylogenetic analysis of this expanding effector family which provides a basis for a proposed nomenclature to guide future research. The extensive genetic diversity that exists within the HopF family presents a great opportunity to study how functional diversification on an effector family contributes to host specialization. This article is protected by copyright. All rights reserved.

A Human “eFP” Browser for Generating Gene Expression Anatograms

Patel RV, Hamanishi ET, Provart NJ

PLoS ONE 2016;11(3):e0150982

PMID: 26954504

Abstract

Transcriptomic studies help to further our understanding of gene function. Human transcriptomic studies tend to focus on a particular subset of tissue types or a particular disease state; however, it is possible to collate into a compendium multiple studies that have been profiled using the same expression analysis platform to provide an overview of gene expression levels in many different tissues or under different conditions. In order to increase the knowledge and understanding we gain from such studies, intuitive visualization of gene expression data in such a compendium can be useful. The Human eFP (“electronic Fluorescent Pictograph”) Browser presented here is a tool for intuitive visualization of large human gene expression data sets on pictographic representations of the human body as gene expression “anatograms”. Pictographic representations for new data sets may be generated easily. The Human eFP Browser can also serve as a portal to other gene-specific information through link-outs to various online resources.

Multiple Calmodulin-Binding Sites Regulate Arabidopsis CNGC12

DeFalco TA, Marshall CB, Munro K, Kang HG, Moeder W, Ikura M, Snedden WA, Yoshioka K

Plant Cell 2016 Jul;28(7):1738-51

PMID: 27335451

Abstract

Ca(2+) signaling is critical to plant immunity; however, the channels involved are poorly characterized. Cyclic nucleotide-gated channels (CNGCs) are nonspecific, Ca(2+)-permeable cation channels. Plant CNGCs are hypothesized to be negatively regulated by the Ca(2+) sensor calmodulin (CaM), and previous work has focused on a C-terminal CaM-binding domain (CaMBD) overlapping with the cyclic nucleotide binding domain of plant CNGCs. However, we show that the Arabidopsis thaliana isoform CNGC12 possesses multiple CaMBDs at cytosolic N and C termini, which is reminiscent of animal CNGCs and unlike any plant channel studied to date. Biophysical characterizations of these sites suggest that apoCaM interacts with a conserved isoleucine-glutamine (IQ) motif in the C terminus of the channel, while Ca(2+)/CaM binds additional N- and C-terminal motifs with different affinities. Expression of CNGC12 with a nonfunctional N-terminal CaMBD constitutively induced programmed cell death, providing in planta evidence of allosteric CNGC regulation by CaM. Furthermore, we determined that CaM binding to the IQ motif was required for channel function, indicating that CaM can both positively and negatively regulate CNGC12. These data indicate a complex mode of plant CNGC regulation by CaM, in contrast to the previously proposed competitive ligand model, and suggest exciting parallels between plant and animal channels.

Phytopathogen Genome Announcement: Draft Genome Sequences of 62 Pseudomonas syringae Type and Pathotype Strains

Thakur S, Weir BS, Guttman DS

Mol. Plant Microbe Interact. 2016 Apr;29(4):243-6

PMID: 26883489

Abstract

Pseudomonas syringae is a diverse species-complex that includes many important crop pathogens. Here, we report the draft genomes of 62 type and pathotype strains, which provide a genomic reference for the diversity of this species complex and will contribute to the elucidation of the genomic basis of pathogenicity and host specificity.

A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics

van Hazel I, Dungan SZ, Hauser FE, Morrow JM, Endler JA, Chang BS

Protein Sci. 2016 Jul;25(7):1308-18

PMID: 26889650

Abstract

Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates.

Post-Translational Modifications of Histones in Vertebrate Neurogenesis

Mitrousis N, Tropepe V, Hermanson O

Front Neurosci 2015;9:483

PMID: 26733796

Abstract

The process of neurogenesis, through which the entire nervous system of an organism is formed, has attracted immense scientific attention for decades. How can a single neural stem cell give rise to astrocytes, oligodendrocytes, and neurons? Furthermore, how is a neuron led to choose between the hundreds of different neuronal subtypes that the vertebrate CNS contains? Traditionally, niche signals and transcription factors have been on the spotlight. Recent research is increasingly demonstrating that the answer may partially lie in epigenetic regulation of gene expression. In this article, we comprehensively review the role of post-translational histone modifications in neurogenesis in both the embryonic and adult CNS.

Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake

Schott RK, Müller J, Yang CG, Bhattacharyya N, Chan N, Xu M, Morrow JM, Ghenu AH, Loew ER, Tropepe V, Chang BS

Proc. Natl. Acad. Sci. U.S.A. 2016 Jan;113(2):356-61

PMID: 26715746

Abstract

Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the “transmutation” theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single “cones.” Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality.

Genomic and Gene-Expression Comparisons among Phage-Resistant Type-IV Pilus Mutants of Pseudomonas syringae pathovar phaseolicola

Sistrom M, Park D, O’Brien HE, Wang Z, Guttman DS, Townsend JP, Turner PE

PLoS ONE 2015;10(12):e0144514

PMID: 26670219

Abstract

Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pph strains, we examined genomic and gene expression variation among three bacterial genotypes that differ in the number of type IV pili expressed per cell: ordinary (wild-type), non-piliated, and super-piliated. Genome sequencing of non-piliated and super-piliated Pph identified few mutations that separate these genotypes from wild type Pph–and none present in genes known to be directly involved in type IV pilus expression. Expression analysis revealed that 81.1% of gene ontology (GO) terms up-regulated in the non-piliated strain were down-regulated in the super-piliated strain. This differential expression is particularly prevalent in genes associated with respiration–specifically genes in the tricarboxylic acid cycle (TCA) cycle, aerobic respiration, and acetyl-CoA metabolism. The expression patterns of the TCA pathway appear to be generally up and down-regulated, in non-piliated and super-piliated Pph respectively. As pilus retraction is mediated by an ATP motor, loss of retraction ability might lead to a lower energy draw on the bacterial cell, leading to a different energy balance than wild type. The lower metabolic rate of the super-piliated strain is potentially a result of its loss of ability to retract.