Publications

Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants

Ckurshumova W, Caragea AE, Goldstein RS, Berleth T

Mol Plant 2011 Sep;4(5):794-804

PubMed PMID: 21772029

Abstract

Since the hallmark discovery of Aequorea victoria’s Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants, fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types, to monitor dynamic cell fate selection processes, and to obtain cell type-specific transcriptomes. Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes. The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms. In developmental studies, the use of fluorescent proteins has become critical, where morphological markers of tissues, cell types, or differentiation stages are either not known or not easily recognizable. In this review, we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.

Clone history shapes Populus drought responses

Raj S, Bräutigam K, Hamanishi ET, Wilkins O, Thomas BR, Schroeder W, Mansfield SD, Plant AL, Campbell MM

Proc. Natl. Acad. Sci. U.S.A. 2011 Jul;108(30):12521-6

PubMed PMID: 21746919

Abstract

Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.

Altered germination and subcellular localization patterns for PUB44/SAUL1 in response to stress and phytohormone treatments

Salt JN, Yoshioka K, Moeder W, Goring DR

PLoS ONE 2011;6(6):e21321

PubMed PMID: 21738636

Abstract

BACKGROUND: In plants, the ubiquitin-proteasome system is emerging as a significant regulatory system throughout the plant lifecycle. The ubiquitination of a target protein requires the sequential actions of the E1, E2 and E3 enzymes, with the latter E3 enzyme conferring target selection in this process. There are a large number of predicted E3 enzymes in plant genomes, and very little is known about the functions of many of these predicted genes. Here we report here an analysis of two closely-related members of the Arabidopsis Plant U-box (PUB) family of E3 ubiquitin ligases, PUB43 and PUB44.

PRINCIPAL FINDINGS: Homozygous pub44/pub44 mutant seedlings were found displayed a seedling lethal phenotype and this corresponded with widespread cell death lesions throughout the cotyledons and roots. Interestingly, heterozygous PUB44/pub44 seedlings were wild-type in appearance yet displayed intermediate levels of cell death lesions in comparison to pub44/pub44 seedlings. In contrast, homozygous pub43/pub43 mutants were viable and did not show any signs of cell death despite the PUB43 gene being more highly expressed than PUB44. The PUB44 mutants are not classical lesion mimic mutants as they did not have increased resistance to plant pathogens. We also observed increased germination rates in mutant seeds for both PUB44 and PUB43 under inhibitory concentrations of abscisic acid. Finally, the subcellular localization of PUB44 was investigated with transient expression assays in BY-2 cells. Under varying conditions, PUB44 was observed to be localized to the cytoplasm, plasma membrane, or nucleus.

CONCLUSIONS: Based on mutant plant analyses, the Arabidopsis PUB43 and PUB44 genes are proposed to function during seed germination and early seedling growth. Given PUB44’s ability to shuttle from the nucleus to the plasma membrane, PUB44 may be active in different subcellular compartments as part of these biological functions.

The YopJ superfamily in plant-associated bacteria

Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, Desveaux D

Mol. Plant Pathol. 2011 Dec;12(9):928-37

PubMed PMID: 21726386

Abstract

Bacterial pathogens employ the type III secretion system to secrete and translocate effector proteins into their hosts. The primary function of these effector proteins is believed to be the suppression of host defence responses or innate immunity. However, some effector proteins may be recognized by the host and consequently trigger a targeted immune response. The YopJ/HopZ/AvrRxv family of bacterial effector proteins is a widely distributed and evolutionarily diverse family, found in both animal and plant pathogens, as well as plant symbionts. How can an effector family effectively promote the virulence of pathogens on hosts from two separate kingdoms? Our understanding of the evolutionary relationships among the YopJ superfamily members provides an excellent opportunity to address this question and to investigate the functions and virulence strategies of a diverse type III effector family in animal and plant hosts. In this work, we briefly review the literature on YopJ, the archetypal member from Yersinia pestis, and discuss members of the superfamily in species of Pseudomonas, Xanthomonas, Ralstonia and Rhizobium. We review the molecular and cellular functions, if known, of the YopJ homologues in plants, and highlight the diversity of responses in different plant species, with a particular focus on the Pseudomonas syringae HopZ family. The YopJ superfamily provides an excellent foundation for the study of effector diversification in the context of wide-ranging, co-evolutionary interactions.

Misregulation of phosphoinositides in Arabidopsis thaliana decreases pollen hydration and maternal fertility

Chapman LA, Goring DR

Sex. Plant Reprod. 2011 Dec;24(4):319-26

PubMed PMID: 21691764

Abstract

Phosphoinositides are important lipids involved in membrane identity, vesicle trafficking, and intracellular signaling. In recent years, phosphoinositides have been shown to play a critical role in polarized secretion in plants, as perturbations of phosphoinositide metabolism, through loss of function mutants, result in defects in root hair elongation and pollen tube growth, where polarized secretion occurs rapidly. In the Brassicaceae, responses of stigmatic papillae to compatible pollen are also thought to involve highly regulated secretory events to facilitate pollen hydration and penetration of the pollen tube through the stigmatic surface. We therefore sought to analyze the female sporophyte fertility of the root hair defective4-1 mutant and the PI 4-kinase ?1/?2 double mutant, which differentially affect phosphatidylinositol-4-phosphate (PI4P) levels. Stigmas from both mutants supported slower rates of pollen grain hydration, and the fecundity of these mutants was also diminished as a result of failed pollination events. This study therefore concludes that PI4P is integral to appropriate pistil responses to compatible pollen.

Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy

Ckurshumova W, Scarpella E, Goldstein RS, Berleth T

Plant Sci. 2011 Aug;181(2):96-104

PubMed PMID: 21683873

Abstract

Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception.

Analysis of gene expression patterns during seed coat development in Arabidopsis

Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R, Selvaraj G, Datla R, Haughn G

Mol Plant 2011 Nov;4(6):1074-91

PubMed PMID: 21653281

Abstract

The seed coat is important for embryo protection, seed hydration, and dispersal. Seed coat composition is also of interest to the agricultural sector, since it impacts the nutritional value for humans and livestock alike. Although some seed coat genes have been identified, the developmental pathways controlling seed coat development are not completely elucidated, and a global genetic program associated with seed coat development has not been reported. This study uses a combination of genetic and genomic approaches in Arabidopsis thaliana to begin to address these knowledge gaps. Seed coat development is a complex process whereby the integuments of the ovule differentiate into specialized cell types. In Arabidopsis, the outermost layer of cells secretes mucilage into the apoplast and develops a secondary cell wall known as a columella. The layer beneath the epidermis, the palisade, synthesizes a secondary cell wall on its inner tangential side. The innermost layer (the pigmented layer or endothelium) produces proanthocyanidins that condense into tannins and oxidize, giving a brown color to mature seeds. Genetic separation of these cell layers was achieved using the ap2-7 and tt16-1 mutants, where the epidermis/palisade and the endothelium do not develop respectively. This genetic ablation was exploited to examine the developmental programs of these cell types by isolating and collecting seed coats at key transitions during development and performing global gene expression analysis. The data indicate that the developmental programs of the epidermis and the pigmented layer proceed relatively independently. Global expression datasets that can be used for identification of new gene candidates for seed coat development were generated. These dataset provide a comprehensive expression profile for developing seed coats in Arabidopsis, and should provide a useful resource and reference for other seed systems.

Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions

Bassel GW, Lan H, Glaab E, Gibbs DJ, Gerjets T, Krasnogor N, Bonner AJ, Holdsworth MJ, Provart NJ

Proc. Natl. Acad. Sci. U.S.A. 2011 Jun;108(23):9709-14

PubMed PMID: 21593420

Abstract

Seed germination is a complex trait of key ecological and agronomic significance. Few genetic factors regulating germination have been identified, and the means by which their concerted action controls this developmental process remains largely unknown. Using publicly available gene expression data from Arabidopsis thaliana, we generated a condition-dependent network model of global transcriptional interactions (SeedNet) that shows evidence of evolutionary conservation in flowering plants. The topology of the SeedNet graph reflects the biological process, including two state-dependent sets of interactions associated with dormancy or germination. SeedNet highlights interactions between known regulators of this process and predicts the germination-associated function of uncharacterized hub nodes connected to them with 50% accuracy. An intermediate transition region between the dormancy and germination subdomains is enriched with genes involved in cellular phase transitions. The phase transition regulators SERRATE and EARLY FLOWERING IN SHORT DAYS from this region affect seed germination, indicating that conserved mechanisms control transitions in cell identity in plants. The SeedNet dormancy region is strongly associated with vegetative abiotic stress response genes. These data suggest that seed dormancy, an adaptive trait that arose evolutionarily late, evolved by coopting existing genetic pathways regulating cellular phase transition and abiotic stress. SeedNet is available as a community resource (http://vseed.nottingham.ac.uk) to aid dissection of this complex trait and gene function in diverse processes.

Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective

O’Brien HE, Thakur S, Guttman DS

Annu Rev Phytopathol 2011;49:269-89

PubMed PMID: 21568703

Abstract

The phytopathogenic bacterium Pseudomonas syringae causes serious diseases in a wide range of important crop plants, with recent severe outbreaks on the New Zealand kiwifruit crop and among British horse chestnut trees. Next-generation genome sequencing of over 25 new strains has greatly broadened our understanding of how this species adapts to a diverse range of plant hosts. Not unexpectedly, the genomes were found to be highly dynamic, and extensive polymorphism was found in the distribution of type III secreted effectors (T3SEs) and other virulence-associated genes, even among strains within the same pathovar. An underexplored area brought to light by these data is the specific metabolic adaptations required for growth on woody hosts. These studies provide a tremendous wealth of candidates for more refined functional characterization, which is greatly enhancing our ability to disentangle the web of host-pathogen interactions that determine disease outcomes.

Structural and biochemical investigation of two Arabidopsis shikimate kinases: the heat-inducible isoform is thermostable

Fucile G, Garcia C, Carlsson J, Sunnerhagen M, Christendat D

Protein Sci. 2011 Jul;20(7):1125-36

PubMed PMID: 21520319

Abstract

The expression of plant shikimate kinase (SK; EC 2.7.1.71), an intermediate step in the shikimate pathway to aromatic amino acid biosynthesis, is induced under specific conditions of environmental stress and developmental requirements in an isoform-specific manner. Despite their important physiological role, experimental structures of plant SKs have not been determined and the biochemical nature of plant SK regulation is unknown. The Arabidopsis thaliana genome encodes two SKs, AtSK1 and AtSK2. We demonstrate that AtSK2 is highly unstable and becomes inactivated at 37 °C whereas the heat-induced isoform, AtSK1, is thermostable and fully active under identical conditions at this temperature. We determined the crystal structure of AtSK2, the first SK structure from the plant kingdom, and conducted biophysical characterizations of both AtSK1 and AtSK2 towards understanding this mechanism of thermal regulation. The crystal structure of AtSK2 is generally conserved with bacterial SKs with the addition of a putative regulatory phosphorylation motif forming part of the adenosine triphosphate binding site. The heat-induced isoform, AtSK1, forms a homodimer in solution, the formation of which facilitates its relative thermostability compared to AtSK2. In silico analyses identified AtSK1 site variants that may contribute to AtSK1 stability. Our findings suggest that AtSK1 performs a unique function under heat stress conditions where AtSK2 could become inactivated. We discuss these findings in the context of regulating metabolic flux to competing downstream pathways through SK-mediated control of steady state concentrations of shikimate.